
Mobile Application Testing

Adrian Kosmaczewski

Mobile Application Testing ii

Contents

1 Introduction 1
1.1 Audience of this Book . 1

1.2 Structure of the Book . 1

Sample Application . 2

1.3 Technical Requirements . 5

1.4 Acknowledgements . 5

I Testing iOS Applications 6

2 Defensive Coding Techniques for iOS 7
2.1 NSError, NSException and NSAssert 7

NSAssert . 7

When to use Assertions . 7

Guidelines for Assertions . 8

Assertions in Cocoa . 8

NSException . 9

Guidelines for Using Exceptions 9

Setting a Global Uncaught Exception Handler 10

NSError . 11

Error Handling Techniques . 11

2.2 Code Defensively . 12

Treat warnings as errors . 12

Organize your code . 14

Use #pragma mark statements . 15

iii

Only advertise public methods in header files 17

Use the Scientific Method of Debugging 17

Use consistent coding conventions 18

2.3 Debugging Techniques . 18

Add Context Information to Log Messages 18

Inspecting Objects . 19

Adding Exception Breakpoints . 19

Inspecting Memory Management . 20

Zombies . 21

Key-Value Observing . 23

Finding Non-Localized Strings . 23

Debugging UIViews . 24

Debugging Core Data Objects . 24

2.4 Useful Tools . 26

Network Link Conditioner . 26

QuincyKit . 27

NSLogger . 33

2.5 Conclusion . 34

3 Unit Testing iOS Applications 35
3.1 OCUnit / SenTest . 35

Adding Tests . 35

Running Tests . 38

Functional Testing . 39

3.2 Kiwi . 41

Adding Kiwi to a project . 41

Adding Specs to a Project . 42

Testing User Interfaces with Kiwi . 44

3.3 BDD vs TDD . 45

3.4 Conclusion . 47

4 Functional Testing of iOS Applications 48
4.1 Frank . 48

Getting Started with Frank . 48

Adding Custom Tests . 51

4.2 Calabash-iOS . 53

Getting Started . 54

Adding Tests . 54

4.3 KIF . 56

Features . 56

iv

Installation . 56

Writing Tests . 58

4.4 UI Automation with Instruments . 62

Creating UI Tests with Instruments 62

4.5 Conclusion . 66

II Testing Android Applications 67

5 Defensive Coding Techniques for Android 68
5.1 Exceptions . 68

Types of Exceptions . 68

Exception Hierarchy . 68

Exception Handling Guidelines . 69

5.2 Assertions . 70

5.3 The Monkey . 70

5.4 Performance Tips . 73

5.5 Miscellaneous Tips . 73

StrictMode . 73

Give Threads a Name . 76

Immutable Objects . 76

More . 76

5.6 Conclusion . 76

6 Unit Testing Android Applications 77
6.1 JUnit . 77

Adding Tests . 78

Testing Activities . 82

6.2 Robolectric . 83

Installation . 84

Adding Tests . 85

6.3 Conclusion . 90

7 Functional Testing for Android Apps 91
7.1 Calabash-Android . 91

Getting Started . 91

Preparing the Android Project . 92

Creating a Feature . 93

Running the Test . 93

7.2 Robotium . 94

How to use . 95

v

7.3 Conclusion . 97

Bibliography 99
Books . 99

Tools . 99

Articles . 100

A iOS Coding Guidelines 102
A.1 Files, Code Organization and Other Issues 102

A.2 Brackets . 102

A.3 Instance Variable + Property Naming Standards 103

A.4 Properties, init and dealloc . 104

A.5 Pointers . 105

A.6 Comments . 105

A.7 Protocols . 106

A.8 Before Committing Code in SCM Systems 106

B Code Style Guidelines for Android 108
B.1 Java Language Rules . 108

Don’t Ignore Exceptions . 108

Don’t Catch Generic Exception . 110

Don’t Use Finalizers . 111

Fully Qualify Imports . 111

B.2 Java Library Rules . 112

B.3 Java Style Rules . 112

Use Javadoc Standard Comments . 112

Define Fields in Standard Places . 113

Limit Variable Scope . 113

Order Import Statements . 115

Use Spaces for Indentation . 116

Follow Field Naming Conventions . 116

Use Standard Brace Style . 117

Limit Line Length . 117

Use Standard Java Annotations . 118

Treat Acronyms as Words . 118

Log Sparingly . 119

Be Consistent . 122

B.4 Javatests Style Rules . 122

Follow Test Method Naming Conventions 122

Mobile Application Testing vi

List of Figures

1.1 iOS sample application . 3

1.2 Android sample application . 4

2.1 Treating warnings as errors in Xcode 4 13

2.2 Code regions as seen in the Xcode Jump Bar 16

2.3 Setting an exception breakpoint . 20

2.4 Using the zombies instruments . 22

2.5 Enabling zombies in Xcode 4.5 . 23

2.6 Network Link Conditioner preference pane 26

2.7 Types of network conditions . 27

2.8 QuincyKit prompt to send a crash report to the server 28

2.9 QuincyKit administration interface 30

2.10Crash reports shown by QuincyKit 31

2.11NSLogger session . 33

3.1 Adding tests to an Xcode project . 36

4.1 Enabling accessibility in OS X . 49

4.2 The Symbiote application launched by Frank 50

4.3 Selecting the KIF library . 58

4.4 Selecting the automation instrument 64

4.5 Instruments showing a successfully passed test 65

5.1 Exception class hierarchy in Java . 69

6.1 Creating a new JUnit test . 79

LIST OF FIGURES vii

6.2 JUnit test run results . 81

6.3 Android SDK Manager . 85

Mobile Application Testing viii

List of Tables

2.1 Preprocessor macros and for logging in C/C++/Objective-C. 18

2.2 Expressions for logging in Objective-C. 19

Mobile Application Testing ix

About the author

Adrian Kosmaczewski is a software developer, trainer and book author. He has

shipped mobile, web and desktop apps for iOS, Android, Mac OS X, Windows

and Linux since 1996.

Adrian is the author of "Mobile JavaScript Application Development" and "Sen-

cha Touch 2: Up and Running", both published by O’Reilly.

When not writing or teaching, Adrian likes to spend time with his wife Claudia

and his cat Max. He updates his blogs and his Twitter or Instagram accounts

("@akosma") as often as possible, and is happy to have new followers every day.

Adrian has studied physics in Switzerland, economics in Buenos Aires, and

holds a Master in Information Technology with a specialization in Software En-

gineering from the University of Liverpool.

Mobile Application Testing x

Preface

Mobile applications have taken the world by storm. Thousands of new applica-

tions are published every day, and they are getting every day more complex as

customer demand more and more from their apps.

The need for high quality standards in mobile apps will only increase in the

future; this booklet is a humble compilation of tips, tricks and techniques that

can yield better code and happier teams.

I hope that these lines will help you to increase your productivity and the sales

of your apps!

Oron-la-Ville, January 2013.

Mobile Application Testing 1 / 122

1
Introduction

Mostly driven by iOS and Android, mobile developers are faced with increas-

ingly complex requirements and deployment issues, as the market for mobile

applications grows constantly.

This book is a practical guide for testing mobile applications for iOS or Android

devices. It includes an overview of the most important tools available, either

provided from the platform vendors, or available in the market as open source

or commercially.

1.1 Audience of this Book
This book is aimed to mobile developers, proficient in either iOS and/or Android,

willing to increase the quality of their applications. They should be comfortable

with the general concepts of software quality management, which will not be

covered in this book.

1.2 Structure of the Book
This book is divided in two sections, covering the same subjects for both iOS

and Android applications:

• Defensive coding techniques;

• Unit testing;

• Functional testing.

For each platform, the book covers the most important frameworks and tools

available in each area.

1.2. STRUCTURE OF THE BOOK 2

Sample Application
We are going to use a very simple application to showcase different technigues

used to test iOS and Android apps: an integer calculator, implemented in the

most naive and simple way.

This application uses an MVC architecture, using a class named AKOIntegerCalculator

for iOS and IntegerCalculator for Android, encapsulating the calculation

logic, and an AKOViewController class (respectively, MainActivity for An-

droid) to drive the user interface. Figure 1.1 and Figure 1.2 show the UI of the

application running in both the iOS Simulator and the Android Emulator, which

offers basic operations and will be tested throughout the following chapters.

1.2. STRUCTURE OF THE BOOK 3

Figure 1.1: iOS sample application

1.2. STRUCTURE OF THE BOOK 4

Figure 1.2: Android sample application

1.3. TECHNICAL REQUIREMENTS 5

1.3 Technical Requirements
To use the code examples and the instructions of this book, you should use a

computer with the following specifications:

• Mac with OS X Mountain Lion and the latest Xcode (available for free in

the Mac App Store), and the latest Android SDK already installed, including

Eclipse.

• Windows or Linux laptop with the latest Android SDK and Eclipse.

• iOS and/or Android devices (provisioned and ready to be used in development.)

In all cases, the computers used during this training should include:

• A working local web server, ideally available through the local network, like

the one provided by MAMP.

• A working Ruby 1.9 installation, including RubyGems.

• Git 1.8 or later.

• (optional but recommended on Macs) Homebrew, a package manager for OS

X.

Note
At the time of this writing, the latest version of Xcode is 4.6, and the latest ver-
sion of the Android developer tools is version 21.0.1, which is composed by the
following components:
• Eclipse 3.8.1 (Juno)
• Android 4.2 (API 17)

Readers of this book must be comfortable using a terminal or a command line.

1.4 Acknowledgements
The author would like to thank Duncan Scholtz, Java developer and Kishyr Ram-

dial, iOS developer at immedia (Durban, South Africa) for his help and precious

insight during the development of this booklet.

http://www.mamp.info/en/index.html
http://mxcl.github.com/homebrew/

Mobile Application Testing 6 / 122

Part I

Testing iOS Applications

Mobile Application Testing 7 / 122

2
Defensive Coding Techniques for iOS

This chapter will provide a short introduction to techniques used to increase the

quality of your iOS applications.

2.1 NSError, NSException and NSAssert
Cocoa offers different mechanisms to notify about unexpected critical events.

They are meant to be used in different contexts, ranging from coding time to

runtime.

NSAssert
An assertion is code that’s used during development that allows a program to

check itself as it runs. When an assertion is true, that means that everything

is operating as expected. When it’s false, that means that it has detected an

unexpected error in the code. They are specially useful in large, complicated

programs and in high-reliability systems.

When to use Assertions

Assertions can be used to check the following assumptions:

• That the values of function or method parameters fall within expected ranges;

• That files are open (or closed) when a routine starts (or ends) executing;

• That files are writeable (or not);

• That the value of an input is not changed by a function;

• That a pointer is not null;

2.1. NSERROR, NSEXCEPTION AND NSASSERT 8

• That an array contains at least a certain number of elements;

• That an array has been initialized to some state before execution;

• That a container is empty;

• That a computation result match a particular set of assumptions before being

returned to the caller.

Guidelines for Assertions

Remember to follow the following guidelines when using assertions:

• Use error-handling for conditions that are expected to occur; use assertions

for conditions that should never occur;

• Avoid putting executable code into assertions;

• Use assertions to check for pre- and post-conditions in methods and functions.

• For higher robustness, assert and then handle the error anyway.

Note
You can think of assertions as executable documentation, acting asmeaningful
comments helping developers understand the assumptions made by the cre-
ator of a particular set of code lines.

Assertions in Cocoa

Cocoa offers the following assertion macros to be used exclusively in Objective-C

code:

Line 1 NSAssert(condition, desc, ...)

Line 2 NSAssert1(condition, desc, arg)

- NSAssert2(condition, desc, arg, arg)

- NSAssert3(condition, desc, arg, arg, arg)

5 NSAssert4(condition, desc, arg, arg, arg, arg)

- NSAssert5(condition, desc, arg, arg, arg, arg, arg)

- NSParameterAssert(condition)

The same assertions are available for use inside of C functions:

Line 1 NSCAssert(condition, NSString *description, ...)

Line 2 NSCAssert1(condition, NSString *description, arg)

- NSCAssert2(condition, NSString *description, arg, arg)

- NSCAssert3(condition, NSString *description, arg, arg, arg)

5 NSCAssert4(condition, NSString *description, arg, arg, arg, arg)

2.1. NSERROR, NSEXCEPTION AND NSASSERT 9

- NSCAssert5(condition, NSString *description, arg, arg, arg, arg, arg)

- NSCParameterAssert(condition)

Note
The NSParameterAssert and NSCParameterAssert macros can be used to
validate a parameter of (respectively) an Objective-C method or C function.
Just providing the parameter as the condition argument will trigger the evalu-
ation, and if this yields a false value, the macro will log an error message and
raise an exception.

An NSAssert will throw an exception when it fails. So NSAssert is there to be

short and easy way to write and to check any assumptions you have made in

your code. It is not an alternative to exceptions, just a shortcut. If an asser-

tion fails then something has gone terribly wrong in your code and the program

should not continue.

One thing to note is that NSAssert will not be compiled into your code in a

release build.

NSException
Exceptions, as the name implies, are used to signal exceptional events that

threaten the correct execution of an application, and are most probably due

to programming errors or runtime conditions out of reach from the developer.

The times you would @throw your own NSException are when you definitely

want it in a release build, and in things like public libraries/interface when

some arguments are invalid or you have been called incorrectly. Note that it

isn’t really standard practice to @catch an exception and continue running your

application. If you try this with some of Apple’s standard libraries (for example

Core Data) bad things can happen. Similar to an assert, if an exception is thrown

the app should generally terminate fairly quickly because it means there is a

programming error somewhere.

Guidelines for Using Exceptions

Follow these guidelines when using exceptions in your applications:

• Use exceptions to notify about errors that cannot be ignored.

• Throw only when exceptional situations occur.

• Do not throw if you can solve the error locally.

2.1. NSERROR, NSEXCEPTION AND NSASSERT 10

• Avoid throwing in init or dealloc (to avoid memory leaks and inconsisten-

cies) unless you @catch inside of them.

• Think of exceptions as part of the class interface; clients should be aware of

them, in a similar way to Java’s own checked exceptions.

• Include in the exception message all the information that led to the exception.

• Avoid empty @catch blocks.

• Consider having a centralized exception reporter.

• Standardize the use of exceptions in your projects.

• Consider alternatives (logging, NSError, etc).

Setting a Global Uncaught Exception Handler

Cocoa allows iOS developers to set a global uncaught exception handler to their

applications:

Line 1 void exceptionHandler(NSException *exception)

- {

- [[NSUserDefaults standardUserDefaults] setBool:YES forKey: ←↩
DID_CRASH];

- [[NSUserDefaults standardUserDefaults] synchronize];

5 }

-

- @implementation AKOAppDelegate

-

- - (BOOL)application:(UIApplication *)application ←↩
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

10 {

- NSSetUncaughtExceptionHandler(&exceptionHandler);

-

- BOOL didCrash = [[NSUserDefaults standardUserDefaults] boolForKey ←↩
:DID_CRASH];

- if (didCrash)

15 {

- [[NSUserDefaults standardUserDefaults] setBool:NO forKey: ←↩
DID_CRASH];

- NSString *message = @"Unfortunately this app crashed last ←↩
time it was run... Please contact the developer and ask ←↩
for a refund.";

Line 18 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@" ←↩
Crash!"

2.1. NSERROR, NSEXCEPTION AND NSASSERT 11

- message: ←↩
message

20 delegate:nil

- cancelButtonTitle:@"OK"

- otherButtonTitles:nil];

- [alert show];

- }

25

- self.window = [[UIWindow alloc] initWithFrame:[[UIScreen ←↩
mainScreen] bounds]];

- // Override point for customization after application launch.

- self.viewController = [[AKOViewController alloc] initWithNibName: ←↩
@"AKOViewController" bundle:nil];

- self.window.rootViewController = self.viewController;

30 [self.window makeKeyAndVisible];

- return YES;

- }

-

- @end

Although the application dies shortly after executing the global uncaught ex-

ception handler, a common technique is to set a applicationDidCrash = YES

value in NSUserDefaults and to check that value when the application starts

again.

NSError
NSErrors should be used in your libraries/interfaces for errors that are not

programming errors, and that can be recovered from. You can provide informa-

tion/error codes to the caller and they can handle the error cleanly, alert the

user if appropriate, and continue execution. This would typically be for things

like a "File not found" error or some other non-fatal error.

Note
To put it more strongly, an NSException should not be used to indicate a re-
coverable error. In other words: Obj-C’s NSException == Java’s Error class, and
Obj-C’s NSError == Java’s Exception class.

Error Handling Techniques

To handle errors, a certain routine might choose to do any (or all) of the following:

• Return neutral values, such as 0, @"" (empty string) or a NULL pointer.

2.2. CODE DEFENSIVELY 12

• Skip to the next piece of valid data, such as when dealing with long lists of

records sequentially.

• Return the same answer as the last time the method was called.

• Substitute the return value by the closest leval value.

• Log the event in a log file.

• Return an error code (very common in Cocoa, using an NSError ** parame-

ter).

• Call an error processing routine.

• Display an error message whenever the error appears (beware of security and

usability implications!)

• Shut down (for critical systems, it might be the only possible choice!)

2.2 Code Defensively
This section showcases some simple techniques that you might want to adapt

to your own team workflow. The objective being that the code produced by your

organization is predictable and consistent.

Treat warnings as errors
First of all, why does the Objective-C compiler (or compilers in general) output

“warnings”? Many developers are puzzled the first time they encounter them,

since even if the compiler complained, the application usually runs anyway with-

out (perceptible) problems.

Warnings are used to signal specific issues in the source code which could po-

tentially lead to crashes or misbehavior under some circumstances, but which

should not (pay attention to the verb “should”) block the normal compilation and

(hopefully) execution of your code (otherwise, it would be a compiler error).

It’s the way used by your compiler to say:

Hey, I’m not sure, but there’s something fishy in here.

Not removing warnings, as I said above, is a problem that originates both in the

programming background of the developer, and specific technical issues.

Culturally speaking, many other programming environments either do not have

compilers at all (at least not “visible” ones, like Ruby or PHP) or simply do not

spit warnings for anything else than deprecated methods (like C# or Java); this

2.2. CODE DEFENSIVELY 13

situation has made many developers new to the iPhone platform to blatantly

ignore them.

Technically, given the fact that Objective-C is the “other” object-oriented super-

set of C, and that it behaves as a coin with both a static and a dynamic side,

compiler warnings convey a great amount of precious information that must

never be ignored.

In this sense, Objective-C has a lot in common with C. Ignoring warnings

in C is strongly discouraged, and Scott Meyers explains this in chapter 9 of his

book “Effective C++”, stating that (third edition, page 263):

Take compiler warnings seriously, and strive to compile warning-free

at the maximum warning level supported by your compilers.

In the case of Objective-C, this can be done by setting a particular value named

GCC_TREAT_WARNINGS_AS_ERRORS (-Werror) to true in your build settings,

as shown in the figure below.

Figure 2.1: Treating warnings as errors in Xcode 4

Steve McConnell takes this advice to another level of importance in his classic

book “Code Complete” (second edition, page 557):

Set your compiler’s warning level to the highest, pickiest level possible,

and fix the errors it reports. It’s sloppy to ignore compiler errors. It’s

2.2. CODE DEFENSIVELY 14

even sloppier to turn off the warnings so that you can’t even see them.

Children sometimes think that if they close their eyes and can’t see

you, they’ve made you go away (. . .).

Assume that the people who wrote the compiler know a great deal

more about your language than you do. If they’re warning you about

something, it usually means you have an opportunity to learn some-

thing new about your language.

To give a concrete example of the importance of warnings, many of us have

had to migrate applications developed for iPhone OS 2.x to the 3.0 operat-

ing system, mostly because failure to run on the new version of the OS was

ground for removal from the App Store. That moment of truth, the rebuild of the

Xcode project, unveiled a plethora of compiler warnings, most due to deprecated

methods, like the tableView:accessoryTypeForRowWithIndexPath: method of the

UITableViewDelegate protocol, or the initWithFrame:reuseIdentifier: method of

the UITableViewCell class (which, incidentally, are properly marked as such in

the documentation, too).

Compiler warnings in Objective-C have a multitude of reasons:

• Using deprecated symbols;

• Calling method names not declared in included headers;

• Calling methods belonging to implicit protocols;

• Using some ambiguous commands which might be intentional but are syntac-

tically valid anyway;

• Forgetting to return a result in methods not returning “void”;

• Forgetting to #import the header file of a class declared as a forward “@class”;

• Downcasting values and pointers implicitly.

Organize your code
Each @implementation *.m file should always present methods in this order:

1. init and dealloc

2. public methods

3. public @dynamic properties

4. delegate methods (for each supported protocol)

5. private methods

2.2. CODE DEFENSIVELY 15

Use #pragma mark statements
Each logic group of methods should be separated from each other using the

following lines (just type “#p” and hit the TAB key in Xcode to speed up the

process):

Line 1 // ...

- return cell;

- }

-

5 #pragma mark - UIAlertViewDelegate methods

-

- - (void)alertView:(UIAlertView *)alertView

- clickedButtonAtIndex:(NSInteger)buttonIndex

- {

10 // ...

The advantage of this approach is that later, you can use those #pragma marks

to generate an automatic layout in the symbols pop-up of Xcode, as shown in

the figure below.

2.2. CODE DEFENSIVELY 16

Figure 2.2: Code regions as seen in the Xcode Jump Bar

2.2. CODE DEFENSIVELY 17

You can get this pop-up window clicking on the “Jump Bar” of the current Xcode

editor.

Only advertise public methods in header files
This means putting private methods definitions in a (Private) category on top of

the *.m file. This will remove all compiler warnings (about “this class might not

respond to this selector”) and will cleanly separate what’s public from what’s not.

Line 1 #import "UntitledViewController.h"

-

- @interface UntitledViewController ()

- - (id)returnPrivateObject;

5 - (void)changeInternalState:(NSString *)param;

- @end

-

- @implementation UntitledViewController

-

10 - (id)init

- {

Use the Scientific Method of Debugging
describes a scientific method for debugging sessions, which is useful to remind

in this context:

1. Stabilize the error

2. Locate the source of the error:

a. Gather the data that produces the defect.

b. Analyze the data that has been gathered, and form a hypothesis about

the defect.

c. Determine how to prove or disprove the hypothesis, either by testing

the program or by examining the code.

d. Prove or disprove the hypothesis by using the procedure identified in

2(c).

3. Fix the defect.

4. Test the fix.

5. Look for similar errors.

2.3. DEBUGGING TECHNIQUES 18

Use consistent coding conventions
At the end of this document, Appendix A contains generic and important coding

conventions. You can start from this document to create your own.

2.3 Debugging Techniques
This section will highlight interesting debugging techniques available in iOS.

Add Context Information to Log Messages
The C preprocessor provides a number of standard macros that give you infor-

mation about the current file, line number, or function. Additionally, Objective-C

has the _cmd implicit argument which gives the selector of the current method,

and functions for converting selectors and classes to strings. You can use these

in your NSLog statements to provide useful context during debugging or error

handling.

Line 1 NSMutableArray *someObject = [NSMutableArray array];

- NSLog(@"%s:%d someObject=%@", __func__, __LINE__, someObject);

- [someObject addObject:@"foo"];

- NSLog(@"%s:%d someObject=%@", __func__, __LINE__, someObject);

Table 2.1: Preprocessor macros and for logging in

C/C++/Objective-C.

Macro Format Specifier Description
__func__ %s Current function

signature.

__LINE__ %d Current line number in

the source code file

__FILE__ %s Full path to the source

code file.

__PRETTY_FUNCTION__ %s Like func, but includes

verbose type

information in C++

code.

2.3. DEBUGGING TECHNIQUES 19

Table 2.2: Expressions for logging in Objective-C.

Expression Format Specifier Description
NSStringFromSelector(_cmd)%@ Name of the current

selector.

NSStringFromClass([self

class])

%@ Name of the current

object’s class.

[[NSString

stringWithUTF8String:__FILE__]

lastPathComponent]

%@ Name of the source

code file.

[NSThread

callStackSymbols]

%@ NSArray of the current

stack trace as

programmer-readable

strings. For debugging

only, do not present it

to end users or use to

do any logic in your

program.

Inspecting Objects
All Cocoa objects (everything derived from NSObject) support a description

method that returns an NSString describing the object. The most convenient

way to access this description is via Xcode’s Print Description to Console menu

command. Alternatively, you can use LLDB’s print-object (or po for short)

command.

Adding Exception Breakpoints
Xcode 4 offers a simple way to generate a breakpoint whenever an exception

occurs. A great idea when you need to track down application crashes.

In the break point navigator click the plus (+) symbol in the lower left cor-

ner. Choose "Add Exception Breakpoint". The exception breakpoint options are

shown in Figure 2.3.

2.3. DEBUGGING TECHNIQUES 20

Figure 2.3: Setting an exception breakpoint

Beware though that all exceptions will be logged by this breakpoint, not only

uncaught exceptions, but also those surrounded by @try / @catch statements.

You might want to check the "Automatically Continue after Evaluating" checkbox

to avoid stopping too often.

Inspecting Memory Management
You can use -retainCount to get the current retain count of an object. While

this can sometimes be a useful debugging aid, be very careful when you interpret

the results. For example:

Line 1 (lldb) set $s=(void *)[NSClassFromString(@"NSString") string]

- (lldb) p (int)[$s retainCount]

- $4 = 2147483647

- (lldb) p/x 2147483647

5 $5 = 0x7fffffff

The system maintains a set of singleton strings for commonly used values, like

the empty string. The retain count for these strings is a special value indicating

that the object can’t be released.

2.3. DEBUGGING TECHNIQUES 21

Another common source of confusion is the autorelease mechanism. If an ob-

ject has been autoreleased, its retain count is higher than you might otherwise

think, a fact that’s compensated for by the autorelease pool releasing it at some

point in the future. You can determine what objects are in what autorelease

pools by calling _CFAutoreleasePoolPrintPools to print the contents of all

the autorelease pools on the autorelease pool stack:

Line 1 (lldb) call (void)_CFAutoreleasePoolPrintPools()

- - -- ---- -------- Autorelease Pools -------- ---- -- -

- ==== top of stack ================

- 0x327890 (NSCFDictionary)

5 0x32cf30 (NSCFNumber)

- [...]

Line 7 ==== top of pool, 10 objects ===============

- 0x306160 (__NSArray0)

- 0x127020 (NSEvent)

10 0x127f60 (NSEvent)

- ==== top of pool, 3 objects ================

- - -- ---- -------- ----------------- -------- ---- -- -

Zombies
A common type of bug when programming with Cocoa is over-releasing an ob-

ject. This typically causes your application to crash, but the crash occurs after

the last reference count is released (when you try to message the freed object),

which is usually quite removed from the original bug. NSZombieEnabled is your

best bet for debugging this sort of problems; it will uncover any attempt to in-

teract with a freed object.

The easiest way to enable zombies is via Instruments, as shown in Figure 2.4.

However, you can also enable zombies in Xcode, as shown in Figure 2.5. To do

that, hit the "Option-Command-R" key combination (or select "Product / Run"

while holding the "Option" key) and select the "Diagnostics" tab; check the "En-

able Zombie Objects" option in the dialog.

2.3. DEBUGGING TECHNIQUES 22

Figure 2.4: Using the zombies instruments

2.3. DEBUGGING TECHNIQUES 23

Figure 2.5: Enabling zombies in Xcode 4.5

Key-Value Observing
If you’re using Key-Value Observing and you want to know who is observing what

on a particular object, you can get the observation information for that object

and print it using using LLDB’s print-object command.

Line 1 (lldb) # self is some Objective-C object.

- (lldb) po self

- <ZoneInfoManager: 0x48340d0>

- (lldb) # Let’s see who’s observing what key paths.

5 (lldb) po [self observationInfo]

- <NSKeyValueObservationInfo 0x48702d0> (

- <NSKeyValueObservance 0x4825490: Observer: 0x48436)

Finding Non-Localized Strings
You can set the NSShowNonLocalizedStrings preference to find strings that

should have been localized but weren’t. Once enabled, if you request a localized

string and the string is not found in a strings file, the system will return the

2.3. DEBUGGING TECHNIQUES 24

string capitalized and log a message to the console. This is a great way to uncover

problems with out-of-date localizations.

Debugging UIViews
UIView implements a useful description method. In addition, it implements a

recursiveDescription method that you can call to get a summary of an entire

view hierarchy.

Line 1 (lldb) po [self view]

- <UIView: 0x6a107c0; frame = (0 20; 320 460); autoresize = W+H; layer ←↩
= [...]

Line 3 Current language: auto; currently objective-c

- (lldb) po [[self view] recursiveDescription]

5 <UIView: 0x6a107c0; frame = (0 20; 320 460); autoresize = W+H; layer ←↩
= [...]

Line 6 | <UIRoundedRectButton: 0x6a103e0; frame = (124 196; 72 37); ←↩
opaque = NO; [...]

Line 7 | | <UIButtonLabel: 0x6a117b0; frame = (19 8; 34 21); text = ←↩
’Test’; [...]

Debugging Core Data Objects
If you’re working on an app that uses Core Data, it’s inevitable that you’ll end up

in the debugger and need to dig around in the object graph. You’ll also quickly

realize that Core Data’s -description of an object isn’t terribly helpful:

Line 1 (lldb) po myListObj

- (List *) $19 = 0x08054ac0 <List: 0x8054ac0> (entity: List; id: 0 ←↩
x8074280 <x-coredata://29B10357-0723-4950-9EB6-E6D7AD6269B9/List/ ←↩
p175> ; data: <fault>)

Core Data’s documentation is excellent, but surprisingly doesn’t cover some of

the tricks you can use to examine managed objects in the debugger.

The first trick is to fire a fault on the object using -willAccessValueForKey.

After that, you can see what’s really there:

Line 1 (lldb) po [myListObj willAccessValueForKey:nil]

- (id) $20 = 0x08054ac0 <List: 0x8054ac0> (entity: List; id: 0x8074280 ←↩
<x-coredata://29B10357-0723-4950-9EB6-E6D7AD6269B9/List/p175> ; ←↩
data: {

- containerId = "8E4652D3-5516-4186-B1C9-DDBE41E108CF";

- createdAt = "2009-10-08 15:17:53 +0000";

2.3. DEBUGGING TECHNIQUES 25

5 itemContainers = "<relationship fault: 0x8020850 ’itemContainers ←↩
’>";

- })

You might also be surprised when you try to access one of the properties of the

object:

Line 1 (lldb) po myListObj.containerId

- error: property ’containerId’ not found on object of type ’List *’

- error: 1 errors parsing expression

Remember that these properties are defined as @dynamic and there’s a lot of

work done by Core Data at runtime to provide the implementation. The solution

here is to use the KVC accessor -valueForKey: to get the object’s value:

Line 1 (lldb) po [myListObj valueForKey:@"containerId"]

- (id) $26 = 0x08069b60 8E4652D3-5516-4186-B1C9-DDBE41E108CF

Often, you’ll want to examine the relationships between objects. As you can

see in the output above, the attribute itemContainers, which is a to-many

relationship, is a fault. To fire the fault, get all the objects from the set:

Line 1 (lldb) po [[myListObj valueForKey:@"itemContainers"] allObjects]

- (id) $23 = 0x0d0667b0 <__NSArrayI 0xd0667b0>(

- <Container: 0x807a180> (entity: Container; id: 0x801bc50 <x-coredata: ←↩
//29B10357-0723-4950-9EB6-E6D7AD6269B9/Container/p1> ; data: {

- containerId = TestContainer;

5 items = "<relationship fault: 0x805b100 ’items’>";

- state = "(...not nil..)";

- type = 4;

- })

-)

Finally, you may be using Transformable attribute types. The state attribute

above is an example. If you’d like more information than (. . . not nil. . .), use the

KVC getter and you’ll see that it’s an empty NSDictionary:

Line 1 (lldb) po [[[[myListObj valueForKey:@"itemContainers"] allObjects] ←↩
lastObject] valueForKey:@"state"]

- (id) $29 = 0x0807dd30 {

- }

-

5 (lldb) po [[[[[myListObj valueForKey:@"itemContainers"] allObjects] ←↩
lastObject] valueForKey:@"state"] class]

- (id) $30 = 0x01978e0c __NSCFDictionary

2.4. USEFUL TOOLS 26

2.4 Useful Tools
This section will introduce some interesting tools available to iOS developers to

help them code defensively.

Network Link Conditioner
To test your applications in your simulator under different network conditions,

you can use the Network Link Conditioner, available as a separate download

from Apple.

Get the Hardware IO Tools for Xcode. To do this, go into the Xcode menu, then

choose “Open Developer Tool” and finally “More Developer Tools. . . ”. You’ll be

taken to Apple’s developer downloads site; you should download the “Hardware

IO Tools for Xcode”.

The resulting disk image will contain (amongst other things) a preference pane

called “Network Link Conditioner”. Double-click the prefpane file and authenti-

cate to allow it to be installed. You’ll then see the pane in System Preferences,

as shown in Figure 2.6.

Figure 2.6: Network Link Conditioner preference pane

You can choose from various different types of network conditions using the

Profile popup menu, shown in Figure 2.7.

2.4. USEFUL TOOLS 27

Figure 2.7: Types of network conditions

QuincyKit
QuincyKit is an open source system for automatic crash reporting, composed of

client iOS and OS X clients and a PHP + MySQL server backend application. The

client frameworks are able to report, upon restart, a complete crash report to

the backend application, as shown in Figure 2.8.

http://quincykit.net

2.4. USEFUL TOOLS 28

Figure 2.8: QuincyKit prompt to send a crash report to the server

2.4. USEFUL TOOLS 29

To install a working version of QuincyKit, the following steps are required:

Server application:

1. Clone the project from GitHub.

2. Point the local web server to the server folder located in the source code

distribution.

3. Create a new database in the local MySQL server, named quincy.

4. Execute the database_schema.sql SQL script to create the required struc-

ture in the database.

5. Modify the parameters in the config.php file, corresponding to those of

your server (around line 70)

Line 1 $server = ’localhost’;

- $loginsql = ’root’;

- $passsql = ’root’;

- $base = ’quincy’;

6. Navigate to http://localhost:8888/test_setup.php to make sure that

your installation is properly configured.

7. Navigate to http://localhost:8888/admin/ to access the administration

interface.

8. Create an application, specifying the same bundle identifier as your appli-

cation (as shown in Figure 2.9, in our example the identifier is com.akosma.QuincyTest).

Specify a name for the application as well.

9. Click on the application name to access the crash report section, shown in

Figure 2.10.

10. Define an application version, in this case version 1.0.

https://github.com/TheRealKerni/QuincyKit/

2.4. USEFUL TOOLS 30

Figure 2.9: QuincyKit administration interface

2.4. USEFUL TOOLS 31

Figure 2.10: Crash reports shown by QuincyKit

Client framework:

1. Copy the following files in your project:

• BWQuincyManager.h

• BWQuincyManager.m

• CrashReporter.framework

• Quincy.bundle

2. Add the SystemConfiguration.framework to your target.

3. If you are using ARC, set the -fno-objc-arc flag on the BWQuincyManager.m

file, in the "Build Phases / Compile Sources" section of the configuration

for your target.

4. In the "Build Settings" of your target, add the -all_load flag in the "Other

Linker Flags" entry.

2.4. USEFUL TOOLS 32

5. Open your application delegate class, and make it conform to the BWQuincyManagerDelegate

protocol:

Line 1 #import <UIKit/UIKit.h>

- #import "BWQuincyManager.h"

-

- @interface AKOAppDelegate : UIResponder <UIApplicationDelegate, ←↩
BWQuincyManagerDelegate>

5 //...

6. In the implementation of your application delegate, include a new line in

your didFinishLaunchingWithOptions: method:

Line 1 @implementation AKOAppDelegate

-

- - (BOOL)application:(UIApplication *)application

- didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

5 {

- [[BWQuincyManager sharedQuincyManager]

- setSubmissionURL:@"http://servername:8888/ ←↩
crash_v200.php"];

- }

Note
The creators of QuincyKit have created a hosted solution called HockeyApp,
available for a monthly fee, which can be used without having to host its own
server infrastructure.

QuincyKit can also symbolicate crash logs, but this requires a more complex

setup, taking care of the following steps:

• In the latest versions of Xcode, the symbolicatecrash tool is located at the fol-

lowing (long!) path: /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/

Developer/Library/PrivateFrameworks/DTDeviceKit.framework/Versions/A/

Resources/symbolicatecrash

• Make sure to add the following variable in your environment before running

symbolicatecrash: export DEVELOPER_DIR=`xcode-select --print-path`

• Copy the .app and .app.dSYM files in a folder, so that QuincyKit can find them

and symbolicate the crash logs automatically.

QuincyKit can even be configured to push notifications to developers whenever

a certain number of crashes is met, via email or using Growl.

http://hockeyapp.net
http://growl.info

2.4. USEFUL TOOLS 33

Note
Check Technical Note TN2151 to understand and analyze iOS crash reports.

NSLogger
NSLogger is a very powerful open source utility that allows developers to mon-

itor in real time the log messages of their applications, as testers of beta users

interact with the application in a local network. Applications that include the

NSLogger code can interact automatically with a desktop OS X application, dis-

playing not only text but also binary data such as images.

Figure 2.11 shows a typical NSLogger session.

Figure 2.11: NSLogger session

To include NSLogger in an Xcode project, follow these steps:

https://developer.apple.com/library/ios/#technotes/tn2008/tn2151.html
https://github.com/fpillet/NSLogger

2.5. CONCLUSION 34

1. Add the following files to your project:

• LoggerCommon.h

• LoggerClient.h

• LoggerClient.m

2. Add the required system frameworks:

• CFNetwork.framework

• SystemConfiguration.framework

3. Use the NSLogger API calls to log stuff:

• LogMessage() to output text;

• LogData() to output raw binary data;

• LogImageData() to output images;

• LogMarker() to output a marker (arbitrary separator in the logger out-

put.

The desktop OS X application is bundled as an Xcode project, that can be built

and run off the box. When the application detects a new instance of the appli-

cation running, it opens a new log window, and each session can be saved and

viewed separately. The log output can be filtered and searched very easily.

2.5 Conclusion
Several techniques are available these days for iOS developers to increase the

quality of their code; using them will help your teams increase their productivity

and the quality of their products.

Mobile Application Testing 35 / 122

3
Unit Testing iOS Applications

Unit testing is primary mechanism to ensure that the individual components of

an application work properly. It is a very important of testing, albeit not the only

one. In this chapter we will see how to use two different mechanisms to test iOS

applications.

3.1 OCUnit / SenTest
The OCUnit or SenTest framework, created by the Swiss company Sen:te and

included in Xcode since 2004, is the primary mechanism to add unit tests to a

project.

Adding Tests
It is very easy to use; whenever you create a new project, Xcode prompts the

developer whether to add unit tests to it, as shown in Figure 3.1.

http://www.sente.ch/software/ocunit/
http://www.sente.ch

3.1. OCUNIT / SENTEST 36

Figure 3.1: Adding tests to an Xcode project

This operation adds a new target to the project, which will include the code to

be tested, as well as one or many subclasses of the SenTestCase class. In turn,

subclasses of SenTestCase include one or many methods whose name start with

the lowercase test word:

Line 1 #import <SenTestingKit/SenTestingKit.h>

-

- @interface SenTestIntroTests : SenTestCase

-

5 @end

The implementation of the test contains the test... methods, each including

one or more calls to the different STAssert() macros available:

Line 1 #import "SenTestIntroTests.h"

- #import "AKOIntegerCalculator.h"

-

- @interface SenTestIntroTests ()

5

- @property (nonatomic, retain) AKOIntegerCalculator *calc;

-

3.1. OCUNIT / SENTEST 37

- @end

-

10

- @implementation SenTestIntroTests

-

- - (void)setUp

- {

15 [super setUp];

-

- self.calc = [[AKOIntegerCalculator alloc] init];

- NSInteger lastResult = self.calc.lastResult;

- STAssertEquals(lastResult, 0, @"The last result should be 0");

20 }

-

- - (void)tearDown

- {

- self.calc = nil;

25

- [super tearDown];

- }

-

- - (void)testCalcShouldNotBeNil

30 {

- STAssertNotNil(self.calc, @"The calculator should not be nil");

- }

-

- - (void)testCalcCanAdd

35 {

- NSInteger result = [self.calc add:3 with:5];

- STAssertEquals(result, 3 + 5, @"The result should be the sum of 3 ←↩
and 5");

- }

-

40 - (void)testCalcCanSubstract

- {

- NSInteger result = [self.calc substract:3 by:5];

- STAssertEquals(result, 3 - 5, @"The result should be the 3 minus ←↩
5");

- }

45

- - (void)testCalcCanMultiply

- {

- NSInteger result = [self.calc multiply:3 by:5];

3.1. OCUNIT / SENTEST 38

- STAssertEquals(result, 3 * 5, @"The result should be the 3 times ←↩
5");

50 }

-

- - (void)testCalcCanDivide

- {

- NSInteger result = [self.calc divide:8 by:5];

55 STAssertEquals(result, 8 / 5, @"The result should be the 8 ←↩
divided by 5");

- }

-

- - (void)testCalcRaisesExceptionIfDivideByZero

- {

60 STAssertThrows([self.calc divide:4 by:0], @"Attempt to divide by ←↩
zero");

- }

-

- @end

Here you have the complete list of assertion macros you can use in OCUnit:

• STAssertNil(a1, description, . . .)

• STAssertNotNil(a1, description, . . .)

• STAssertTrue(expression, description, . . .)

• STAssertFalse(expression, description, . . .)

• STAssertEqualObjects(a1, a2, description, . . .)

• STAssertEquals(a1, a2, description, . . .)

• STAssertEqualsWithAccuracy(left, right, accuracy, description, . . .)

• STAssertThrows(expression, description, . . .)tNoThrowSpecificNamed(expr, ex-

ception, aName, desc, . . .)

• STFail(description, . . .)

• STAssertTrueNoThrow(expression, description, . . .)

• STAssertFalseNoThrow(expression, description, . . .)

Running Tests
To execute the unit tests, just select "Product / Test" or hit the "Command-U"

keystroke in Xcode. The output of the execution of the tests is shown below:

3.1. OCUNIT / SENTEST 39

Line 1 Test Suite ’SenTestIntroTests’ started at 2013-01-28 15:08:36 +0000

- Test Case ’-[SenTestIntroTests testCalcCanAdd]’ started.

- Test Case ’-[SenTestIntroTests testCalcCanAdd]’ passed (0.000 seconds ←↩
).

- Test Case ’-[SenTestIntroTests testCalcCanDivide]’ started.

5 Test Case ’-[SenTestIntroTests testCalcCanDivide]’ passed (0.000 ←↩
seconds).

- Test Case ’-[SenTestIntroTests testCalcCanMultiply]’ started.

- Test Case ’-[SenTestIntroTests testCalcCanMultiply]’ passed (0.000 ←↩
seconds).

- Test Case ’-[SenTestIntroTests testCalcCanSubstract]’ started.

- Test Case ’-[SenTestIntroTests testCalcCanSubstract]’ passed (0.000 ←↩
seconds).

10 Test Case ’-[SenTestIntroTests testCalcRaisesExceptionIfDivideByZero] ←↩
’ started.

- Test Case ’-[SenTestIntroTests testCalcRaisesExceptionIfDivideByZero] ←↩
’ passed (0.000 seconds).

- Test Case ’-[SenTestIntroTests testCalcShouldNotBeNil]’ started.

- Test Case ’-[SenTestIntroTests testCalcShouldNotBeNil]’ passed (0.000 ←↩
seconds).

- Test Suite ’SenTestIntroTests’ finished at 2013-01-28 15:08:36 +0000.

15 Executed 6 tests, with 0 failures (0 unexpected) in 0.000 (0.001) ←↩
seconds

Functional Testing
Using OCUnit you can also test controllers, thus providing a higher level of

interaction with your code, which makes it very similar to using the functional

testing techniques described in Chapter 4.

To do this, we add a new file of type "Objective-C Test Case" to our project, and

we write the code required:

Line 1 #import "AKOViewControllerTest.h"

- #import "AKOViewController.h"

-

- @interface AKOViewControllerTest ()

5

- @property (nonatomic, retain) AKOViewController *vc;

-

- @end

-

10

3.1. OCUNIT / SENTEST 40

- @implementation AKOViewControllerTest

-

- - (void)setUp

- {

15 [super setUp];

-

- self.vc = [[AKOViewController alloc] init];

-

- // This trick force loads the NIB

20 [self.vc view];

- }

-

- - (void)tearDown

- {

25 self.vc = nil;

-

- [super tearDown];

- }

-

30 - (void)testHasBlankDisplay

- {

- STAssertTrue([self.vc.displayLabel.text isEqualToString:@"0"], @" ←↩
Upon start, the display should be empty");

- }

-

35 - (void)testAdd123To456

- {

- [self.vc enter:self.vc.button1];

- [self.vc enter:self.vc.button2];

- [self.vc enter:self.vc.button3];

40 STAssertTrue([self.vc.displayLabel.text isEqualToString:@"123"], ←↩
@"The display should say 123");

-

- [self.vc performAdd:nil];

- STAssertTrue([self.vc.displayLabel.text isEqualToString:@"0"], @" ←↩
The display should say 0");

-

45 [self.vc enter:self.vc.button4];

- [self.vc enter:self.vc.button5];

- [self.vc enter:self.vc.button6];

- STAssertTrue([self.vc.displayLabel.text isEqualToString:@"456"], ←↩
@"The display should say 456");

-

3.2. KIWI 41

50 [self.vc performEqual:nil];

- STAssertTrue([self.vc.displayLabel.text isEqualToString:@"579"], ←↩
@"The display should say 579");

- }

-

- @end

In the code above we simulate a manual interaction on the view controller, exe-

cuting the IBAction methods in the required order. At every time, we check the

values of the display of the calculator, making sure that it displays the correct

values at every step.

Note
The test shown above will be repeated throughout this book; to compare the
different frameworks, we are going to create a simple test that adds 123 to 456,
yielding a value of 579, as expected.

3.2 Kiwi
Kiwi is a very popular new library that enables iOS developers to use BDD ("Be-

havior Driven Development") techniques in their workflow.

Kiwi is built on top of OCUnit (described in the previous section) and uses blocks

extensively, making it very similar to similar libraries such as RSpec for Ruby or

Jasmine for JavaScript.

Note
At the time of this writing, the latest documented and stable version of Kiwi is
version 1.1. Version 2.0 is already released, but it lacks documentation and will
not be used in this section.

Adding Kiwi to a project
We are going to add Kiwi to the calculator project; for that, follow these steps:

1. Download the source code of Kiwi from Github.

2. Copy the source files into your project, in a folder / group named "Kiwi"

3. Create a unit testing target in your project, if it is not available.

https://github.com/allending/Kiwi
https://www.relishapp.com/rspec
http://pivotal.github.com/jasmine/

3.2. KIWI 42

Adding Specs to a Project
To add a KIWI specification to the project, add a C file (no header file required)

and add the code below:

Line 1 #import "Kiwi.h"

- #import "AKOIntegerCalculator.h"

-

- SPEC_BEGIN(CalculatorSpec)

5

- describe(@"The calculator", ^{

-

- context(@"when created", ^{

-

10 __block AKOIntegerCalculator *calc = nil;

-

- beforeEach(^{

- calc = [[AKOIntegerCalculator alloc] init];

- });

15

- it(@"is not nil", ^{

- [calc shouldNotBeNil];

- });

-

20 afterEach(^{

- [calc release];

- });

-

- });

25

- context(@"when calculating", ^{

-

- __block AKOIntegerCalculator *calc = nil;

-

30 beforeAll(^{

- calc = [[AKOIntegerCalculator alloc] init];

- });

-

- beforeEach(^{

35 NSInteger lastResult = calc.lastResult;

- [[theValue(lastResult) should] equal:theValue(0)];

- });

-

- it(@"can add", ^{

3.2. KIWI 43

40 NSInteger result = [calc add:3 with:5];

- [[theValue(result) should] equal:theValue(3 + 5)];

- });

-

- it(@"can substract", ^{

45 NSInteger result = [calc substract:3 by:5];

- [[theValue(result) should] equal:theValue(3 - 5)];

- });

-

- it(@"can multiply", ^{

50 NSInteger result = [calc multiply:3 by:5];

- [[theValue(result) should] equal:theValue(3 * 5)];

- });

-

- it(@"can divide", ^{

55 NSInteger result = [calc divide:8 by:5];

- [[theValue(result) should] equal:theValue(8 / 5)];

- });

-

- it(@"raises an exception if dividing by zero", ^{

60 [[theBlock(^{

- NSInteger result = [calc divide:4 by:0];

- NSLog(@"result: %d", result);

- }) should] raiseWithName:@" ←↩
AKOIntegerCalculatorDivideByZero"];

- });

65

- afterEach(^{

- [calc reset];

- });

-

70 afterAll(^{

- [calc release];

- });

-

- });

75

- });

-

- SPEC_END

Note the SPEC_BEGIN and SPEC_END macros. The preprocessor uses them to

build the interface and implementation of a normal SenTestCase subclass.

3.2. KIWI 44

SPEC_BEGIN’s sole argument is the actual subclass name. It needs to be a valid

class identifier and a unique symbol in the application.

The strings passed to describe and it macros become part of the test output

and error reporting when the tests fail. The should method returns an object

that responds to matcher methods like the equal: above. (The should method is

added to NSObject so anything can start triggering an assertion.)

The beforeEach method is analogous to the setUp in SenTestCase subclasses.

As you can imagine, afterEach is like tearDown.

You can nest describe blocks within other describe blocks. Using block scope

you can share test state with the nested describe’s to help cut down on ceremo-

nial code noise.

If you need to modify the values of variables defined outside of blocks you need

to use the __block modifier, which will make the variables read/write instead

of just readonly.

Kiwi is a large framework bolted on top of SenTestingKit. It depends a lot on

the magic behind the Objective C runtime. It adds should and shouldNot onto

NSObject. It does a lot of fancy selector forwarding to get the matchers to work.

As shown in the code above, the tests are much more descriptive than those

created using OCUnit; they actually deliberately explain the purpose and logic

of each scenario of use of the application, in a language that is much closer to

what humans can understand.

Testing User Interfaces with Kiwi
We can also test view controllers with Kiwi, in a very similar way to OCUnit.

Line 1 #import "Kiwi.h"

- #import "AKOViewController.h"

-

- SPEC_BEGIN(AKOViewControllerSpec)

5

- describe(@"The calculator view controller", ^{

- context(@"when it starts", ^{

-

- __block AKOViewController *vc = nil;

10

- beforeAll(^{

- vc = [[AKOViewController alloc] init];

-

- // This trick force loads the NIB

3.3. BDD VS TDD 45

15 [vc view];

- });

-

- it(@"has a blank display", ^{

- [[vc.displayLabel.text should] equal:@"0"];

20 });

-

- it(@"displays 579 if the user adds 123 and 456", ^{

- [vc enter:vc.button1];

- [vc enter:vc.button2];

25 [vc enter:vc.button3];

- [[vc.displayLabel.text should] equal:@"123"];

-

- [vc performAdd:nil];

- [[vc.displayLabel.text should] equal:@"0"];

30

- [vc enter:vc.button4];

- [vc enter:vc.button5];

- [vc enter:vc.button6];

- [[vc.displayLabel.text should] equal:@"456"];

35

- [vc performEqual:nil];

- [[vc.displayLabel.text should] equal:@"579"];

- });

-

40 afterAll(^{

- [vc release];

- });

-

- });

45 });

-

- SPEC_END

The functional tests above, as usual, test whether a simple calculation is per-

formed without problem by the software.

3.3 BDD vs TDD
In this chapter we have studied how to use TDD and BDD to increase the qual-

ity of our applications, which raises the question: what is the main difference

between those two techniques? Well, it turns out that there is almost none.

3.3. BDD VS TDD 46

Dan North has said that

TDD – as originally described – is also about the behaviour of entire

systems. Kent [Beck] specifically describes it as operating on multiple

levels of abstraction, not just “down in the code”. BDD is equally im-

portant in this space, because describing the behaviour of systems is

fractal: you can describe different granularities of behaviour from the

entire application right down to individual small components, classes

or functions.

When Dan was working as a coach teaching TDD, he found that it was easier

to get people to understand the principles of TDD if he stopped using the word

‘test’:

My experiences as a coach told me people were missing the point, with

all this talk of unit tests, acceptance tests, functional tests, integration

tests. . . Kent Beck’s style of TDD is a very smart way to develop

software, so I tried removing the word “test” when I was coaching

it, replacing it with things like behaviour, examples, scenarios etc.

The result was very encouraging: People seemed to “get” TDD much

quicker when I avoided referring to testing.

BDD re-explains TDD in a way that highlights the habits that successful TDD

practitioners having been using since the end of the 90’s:

1. Working outside-in, starting from a business or organisational goal

2. Using examples to clarify requirements

3. Developing and using a ubiquitous language

Working outside-in seems obvious to habitual TDD practitioners, but many

teams seem to limit themselves to doing this at the level of small units of code.

Business-level black-box testing is still done manually, or automated as a check

after the code has already been implemented.

This misses out of the major benefit of working outside-in, which is having the

requirement challenged: if you need to explain to a computer how to check the

requirement, you’ll need to be damn sure understand it yourself. If you don’t

(and you often don’t) it’s much cheaper to find that out before you write the code.

What BDD does is formalise this by encouraging you to use scenarios to describe

behaviour. These examples provide the perfect bridge between the business-

facing and technology-facing sides of a team: they’re just formal enough that

you can get a computer to check them, but anyone on the team can read them

and make sure they’re describing behaviour that they actually want.

http://dannorth.net

3.4. CONCLUSION 47

BDD’s emphasis on collaboration, and the use of business-readable, executable

specifications, means that this shared language develops much more quickly.

When everyone is involved in writing documentation that describes what the

system should do, they all get a chance to learn the language of the domain

together.

So BDD really isn’t all that different to TDD. What BDD adds is a clear emphasis

on what it takes to make TDD succeed.

3.4 Conclusion
Both TDD and BDD all contribute to provide live documentation and feedback

to team members about the overall quality of the code base. Choosing one or

the other, or other alternatives such as GHUnit, Google Toolbox for Mac, Specta,

Cedar or other tools such as XcodeCoverage, will all have the intended effect of

helping you build reliable, solid code.

https://github.com/gabriel/gh-unit
http://code.google.com/p/google-toolbox-for-mac/
https://github.com/petejkim/specta
https://github.com/pivotal/cedar
https://github.com/jonreid/XcodeCoverage

Mobile Application Testing 48 / 122

4
Functional Testing of iOS Applications

This chapter will provide an overview of techniques for UI testing automation of

iOS applications using Frank, Calabash-iOS, KIF and finally Apple Instruments.

4.1 Frank
This section will cover the essential steps to get started with Frank, a very useful

tool built on top of Cucumber.

Note
At the time of this writing, the latest version of Frank is version 1.1.6.

Getting Started with Frank
First things first. Make sure that you have Cucumber installed in your machine,

using RubyGems:

Line 1 gem install cucumber

Note
At the time of this writing, the latest version of Cucumber is 1.2.1, and the latest
version of Calabash-Cucumber is 0.9.129.

Install Frank on top of Cucumber now:

Line 1 gem install frank-cucumber

http://testingwithfrank.com
http://cukes.info

4.1. FRANK 49

You will need to turn on the accessibility features on the machine hosting your

iOS simulator. Frank leverages accessibility to automate some actions with the

simulator (such as rotating the device).

On the machine which will be hosting the iOS Simulator go to System Prefer-

ences → Universal Access and Check “Enable access for assistive devices” as

shown in Figure 4.1.

Figure 4.1: Enabling accessibility in OS X

Then you need to "Frankify" your iOS application, which is done by running the

following commands in the root folder of your project:

Line 1 frank setup

If your project contains several targets, the command-line tool will ask you to

specify which target should be frankified.

The next command actually builds the frankified version of your application:

Line 1 frank build

4.1. FRANK 50

Finally, to run the application, just use the following command, which effectively

launches the iOS simulator with your application inside:

Line 1 frank launch

The last command opens a small embedded web application called "Symbiote".

It allows you to inspect the current state of your app as it’s running. It also lets

you experiment with view selectors. View selectors are how you specify which

views in your app you want to interact with or inspect the value of. If you’re

familiar with CSS selectors or XPath expressions the concept is the same.

Line 1 frank inspect

You can see Symbiote running in Figure 4.2.

Figure 4.2: The Symbiote application launched by Frank

4.1. FRANK 51

Adding Custom Tests
Our goal is to use Frank and cucumber to run automated tests against our app.

We can run the initial cucumber test that was provided as part of frank setup.

To do that simple run cucumber in a terminal from the Frank subdirectory.

When you do that you should see the Frankified app launch in the simulator, and

then perform some rotations. You’ll also see some output in the terminal from

cucumber describing the test steps it has performed and eventually declaring

the test scenario passed.

This is the output shown in the console window:

Line 1 Feature:

- As an iOS developer

- I want to have a sample feature file

- So I can see what my next step is in the wonderful world of Frank/ ←↩
Cucumber testing

5

- Scenario: # features/ ←↩
my_first.feature:6

- Rotating the simulator for demonstration purposes

- Given I launch the app # features/ ←↩
step_definitions/launch_steps.rb:5

- Given the device is in landscape orientation # frank- ←↩
cucumber-1.1.6/lib/frank-cucumber/core_frank_steps.rb:151

10 Given the device is in portrait orientation # frank- ←↩
cucumber-1.1.6/lib/frank-cucumber/core_frank_steps.rb:151

- Given the device is in landscape orientation # frank- ←↩
cucumber-1.1.6/lib/frank-cucumber/core_frank_steps.rb:151

- Given the device is in portrait orientation # frank- ←↩
cucumber-1.1.6/lib/frank-cucumber/core_frank_steps.rb:151

-

- 1 scenario (1 passed)

15 5 steps (5 passed)

- 0m4.794s

Now that we know how to run cucumber tests we should write our own. We’ll

write these tests in a new feature file called Frank/features/typing.feature.

Create that file with the following content:

Line 1 Feature: Typing numbers

-

- Scenario: Typing 123 in the keyboard

- Given I launch the app

4.1. FRANK 52

5 Then I should see zero in the display

-

- When I touch the button marked "1"

- Then I should see "1" in the display

-

10 When I touch the button marked "2"

- Then I should see "12" in the display

-

- When I touch the button marked "3"

- Then I should see "123" in the display

15

- When I touch the button marked "+"

- Then I should see zero in the display

-

- When I touch the button marked "4"

20 Then I should see "4" in the display

-

- When I touch the button marked "5"

- Then I should see "45" in the display

-

25 When I touch the button marked "6"

- Then I should see "456" in the display

-

- When I touch the button marked "="

- Then I should see "579" in the display

This expresses a test scenario. Now let’s ask cucumber to test just this fea-

ture by running cucumber features/typing.feature. You should see the app

launch, but then cucumber will complain because it doesn’t know how to exe-

cute any of the steps we’ve described after launching the app. That’s fair enough;

we haven’t defined them anywhere yet! Let’s do that now.

Create a step definition file called features/step_definitions/typing_steps.rb.

When cucumber encountered the undefined steps just now it outputted a bunch

of boilerplate code for defining those steps. We’ll cut and paste that code into

our new step definition file. You should end up with this:

Line 1 Then /^I should see zero in the display$/ do

- check_element_exists("view:’UILabel’ marked:’0’")

- end

-

5 Then /^I should see "(.*?)" in the display$/ do |arg1|

- check_element_exists("view:’UILabel’ marked:’#{arg1}’")

4.2. CALABASH-IOS 53

- end

Finally, running cucumber features/typing.feature should yield the follow-

ing output:

Feature: Typing numbers

Line 1 Scenario: Typing 123 in the keyboard

- Given I launch the app

- Then I should see zero in the display

- When I touch the button marked "1"

5 Then I should see "1" in the display

- When I touch the button marked "2"

- Then I should see "12" in the display

- When I touch the button marked "3"

- Then I should see "123" in the display

10 When I touch the button marked "+"

- Then I should see zero in the display

- When I touch the button marked "4"

- Then I should see "4" in the display

- When I touch the button marked "5"

15 Then I should see "45" in the display

- When I touch the button marked "6"

- Then I should see "456" in the display

- When I touch the button marked "="

- Then I should see "579" in the display

20

- 1 scenario (1 passed)

- 18 steps (18 passed)

- 0m15.130s

4.2 Calabash-iOS
Calabash-iOS is also based on Cucumber like Frank, but its license is more

permissive and commercial-friendly (Frank is released through the GPL while

Calabash uses the Eclipse license.)

Note
At the time of this writing, the latest version of Calabash-Android is version 0.3.8.

https://github.com/calabash/calabash-ios

4.2. CALABASH-IOS 54

Getting Started
To use Calabash, install the gem:

Line 1 gem install calabash-cucumber

Similarly as Frank, you need to prepare your project to use Calabash:

Line 1 calabash-ios setup

Warning
Make sure that Xcode is not running before using the calabash-ios

setup command.

Then, generate skeleton features for your tests:

Line 1 calabash-ios gen

Next, you must open your Xcode project, and build the application using the

scheme that ends with -cal in its name. Finally, run the tests:

Line 1 cucumber

Adding Tests
As usual, we are going to create a very simple test that reproduces a common

interaction with the calculator: the addition of 123 and 456.

This is the test required:

Line 1 Feature: Typing numbers

- This is a calculator

- so I want to add 123 to 456

- and then see the results.

5

- Scenario: Calculate

- Given I am on the Welcome Screen

- Then I touch "1"

- Then I touch "2"

10 Then I touch "3"

- Then I touch "+"

- Then I touch "4"

- Then I touch "5"

- Then I touch "6"

4.2. CALABASH-IOS 55

15 Then I touch "="

- Then I wait to see "579"

- And take picture

The output of this command is shown below:

Line 1 Feature: Typing numbers

- This is a calculator

- so I want to add 123 to 456

- and then see the results.

5

- Scenario: Calculate # features/typing.feature:6

- Waiting at most 30 seconds for simulator (CONNECT_TIMEOUT)

- Retrying at most 2 times (MAX_CONNECT_RETRY)

- (1.) Start Simulator 6.0, iphone, for /Users/adrian/Library/Developer ←↩
/Xcode/DerivedData/CalabashIntro-aacwdpfznewgjscipwldvplwdvfx/ ←↩
Build/Products/Debug-iphonesimulator/CalabashIntro-cal.app

10 Ping http://localhost:37265/...

- Fetch version http://localhost:37265/version...

- {"outcome"=>"SUCCESS", "app_name"=>"CalabashIntro-cal", " ←↩
simulator_device"=>"iPhone", "iOS_version"=>"6.0", "app_version" ←↩
=>"1.0", "system"=>"x86_64", "app_id"=>"com.akosma.CalabashIntro- ←↩
cal", "version"=>"0.9.126", "simulator"=>"iPhone Simulator 358.4, ←↩
iPhone OS 6.0 (iPhone (Retina 3.5-inch)/10A403)"}

- Given I am on the Welcome Screen

- Then I touch "1"

15 Then I touch "2"

- Then I touch "3"

- Then I touch "+"

- Then I touch "4"

- Then I touch "5"

20 Then I touch "6"

- Then I touch "="

- Then I wait to see "579"

- And take picture

-

25 1 scenario (1 passed)

- 11 steps (11 passed)

- 0m7.993s

Note
A very similar tool exists for Android applications as well, called Calabash-
Android. It will be described in Chapter 7.

4.3. KIF 56

4.3 KIF
KIF, which stands for Keep It Functional, is an iOS integration test framework. It

allows for easy automation of iOS apps by leveraging the accessibility attributes

that the OS makes available for those with visual disabilities.

KIF uses undocumented Apple APIs. This is true of most iOS testing frameworks,

and is safe for testing purposes, but it’s important that KIF does not make it into

production code, as it will get your app submission denied by Apple. Follow the

instructions below to ensure that KIF is configured correctly for your project.

Features
• Minimizes Indirection: All of the tests for KIF are written in Objective C. This

allows for maximum integration with your code while minimizing the number

of layers you have to build.

• Easy Configuration: KIF integrates directly into your iOS app, so there’s no

need to run an additional web server or install any additional packages.

• Test Like a User: KIF attempts to imitate actual user input. Automation is

done using tap events wherever possible.

Installation
To install KIF, follow these steps:

1. Use git submodules to add the KIF library to your project:

Line 1 mkdir Frameworks git submodule add https://github.com/ ←↩
square/KIF.git

- Frameworks/KIF

2. Create a workspace that holds both your application and the KIF project.

3. Duplicate the target of your application so that there is a separate binary

to test (this is required since KIF uses private APIs that might get your

application rejected by Apple!)

4. Now that you have a target for your tests, add the tests to that target.

With the project settings still selected in the Project Navigator, and the new

integration tests target selected in the project settings, select the "Build

Phases" tab. Under the "Link Binary With Libraries" section, hit the "+"

4.3. KIF 57

button. In the sheet that appears, select "libKIF.a" and click "Add.", as

shown in Figure 4.3.

5. Next, make sure that we can access the KIF header files. To do this, add the

KIF directory to the "Header Search Paths" build setting. Start by selecting

the "Build Settings" tab of the project settings, and from there, use the filter

control to find the "Header Search Paths" setting. Double click the value,

and add the search path "$(SRCROOT)"/Frameworks/KIF/ to the list (do

not forget the quotes around "$(SRCROOT)"!). Mark the entry as recursive.

If it’s not there already, you should add the $(inherited) entry as the first

entry in this list.

6. KIF takes advantage of Objective C’s ability to add categories on an object,

but this isn’t enabled for static libraries by default. To enable this, add the

-ObjC and -all_load flags to the "Other Linker Flags" build setting.

7. Finally, add a preprocessor flag to the testing target so that you can condi-

tionally include code. This will help make sure that none of the testing code

makes it into the production app. Call the flag RUN_KIF_TESTS=1 and add

it under the "Preprocessor Macros." Again, make sure the $(inherited) entry

is first in the list.

4.3. KIF 58

Figure 4.3: Selecting the KIF library

Writing Tests
With your project configured to use KIF, it’s time to start writing tests. There

are three main classes used in KIF testing: the test runner (KIFTestController),

a testable scenario (KIFTestScenario), and a test step (KIFTestStep). The test

runner is compoto this view," and "wait for this view." These steps are included

as factory methods on KIFTestStep in the base KIF implementation.

4.3. KIF 59

KIF relies on the built-in accessibility of iOS to perform its test steps. As such,

it’s important that your app is fully accessible. This is also a great way to en-

sure that your app is usable by the sight impaired. Making your application

accessible is usually as easy as giving your views reasonable labels.

Although not required, it’s recommended that you create a subclass of KIFTest-

Controller that is specific to your application. This subclass will override the

-initializeScenarios method, which will contain a list of invocations for the sce-

narios that your test suite will run. We’ll call our subclass AKOTestController,

and will add an initial test scenario, which we will define later.

The code for the tests follows below:

AKOTestController.h

Line 1 #import "KIFTestController.h"

-

- @interface AKOTestController : KIFTestController

-

5 @end

AKOTestController.m

Line 1 #import "AKOTestController.h"

- #import "KIFTestScenario+AKOTestScenario.h"

-

- @implementation AKOTestController

5

- - (void)initializeScenarios;

- {

- [self addScenario:[KIFTestScenario scenarioToCalculate]];

- }

10

- @end

KIFTestScenario+AKOTestScenario.h

Line 1 #import "KIFTestScenario.h"

-

- @interface KIFTestScenario (AKOTestScenario)

-

5 + (id)scenarioToCalculate;

-

- @end

KIFTestScenario+AKOTestScenario.m

4.3. KIF 60

Line 1 #import "KIFTestScenario+AKOTestScenario.h"

- #import "KIFTestStep+AKOTestStep.h"

-

- @implementation KIFTestScenario (AKOTestScenario)

5

- + (id)scenarioToCalculate

- {

- KIFTestScenario *scenario = [KIFTestScenario ←↩
scenarioWithDescription:@"Test that a user can make a basic ←↩
calculation"];

- [scenario addStepsFromArray:[KIFTestStep stepsToTap123]];

10 [scenario addStep:[KIFTestStep stepToTapPlus]];

- [scenario addStepsFromArray:[KIFTestStep stepsToTap456]];

- [scenario addStep:[KIFTestStep stepToTapEqual]];

- [scenario addStep:[KIFTestStep stepToCheckResult]];

- return scenario;

15 }

-

- @end

KIFTestStep+AKOTestStep.h

Line 1 #import "KIFTestStep.h"

-

- @interface KIFTestStep (AKOTestStep)

-

5 + (NSArray *)stepsToTap123;

- + (id)stepToTapPlus;

- + (NSArray *)stepsToTap456;

- + (id)stepToTapEqual;

- + (id)stepToCheckResult;

10

- @end

KIFTestStep+AKOTestStep.m

Line 1 #import "KIFTestStep+AKOTestStep.h"

- #import "UIApplication-KIFAdditions.h"

- #import "UIAccessibilityElement-KIFAdditions.h"

-

5 @implementation KIFTestStep (AKOTestStep)

-

- + (NSArray *)stepsToTap123

4.3. KIF 61

- {

- NSMutableArray *steps = [NSMutableArray array];

10 [steps addObject:[KIFTestStep stepToTapViewWithAccessibilityLabel ←↩
:@"1"]];

- [steps addObject:[KIFTestStep stepToTapViewWithAccessibilityLabel ←↩
:@"2"]];

- [steps addObject:[KIFTestStep stepToTapViewWithAccessibilityLabel ←↩
:@"3"]];

- return steps;

- }

15

- + (id)stepToTapPlus

- {

- return [KIFTestStep stepToTapViewWithAccessibilityLabel:@"+"];

- }

20

- + (NSArray *)stepsToTap456

- {

- NSMutableArray *steps = [NSMutableArray array];

- [steps addObject:[KIFTestStep stepToTapViewWithAccessibilityLabel ←↩
:@"4"]];

25 [steps addObject:[KIFTestStep stepToTapViewWithAccessibilityLabel ←↩
:@"5"]];

- [steps addObject:[KIFTestStep stepToTapViewWithAccessibilityLabel ←↩
:@"6"]];

- return steps;

- }

-

30 + (id)stepToTapEqual

- {

- return [KIFTestStep stepToTapViewWithAccessibilityLabel:@"="];

- }

-

35 + (id)stepToCheckResult

- {

- NSString *expectedLabel = @"579";

- NSString *description = [NSString stringWithFormat:@"Verify ←↩
calculation result"];

- return [self stepWithDescription:description executionBlock:^(←↩
KIFTestStep *step, NSError **error) {

40 UIAccessibilityElement *element = [[UIApplication ←↩
sharedApplication] accessibilityElementWithLabel:@" ←↩
displayLabel"];

4.4. UI AUTOMATION WITH INSTRUMENTS 62

- UILabel *label = (UILabel *)[UIAccessibilityElement ←↩
viewContainingAccessibilityElement:element];

- if ([expectedLabel isEqualToString:label.text])

- {

- return KIFTestStepResultSuccess;

45 }

-

- KIFTestCondition(NO, error, @"Failed to compare the label ←↩
text: expected ’%@’, actual ’%@’", expectedLabel, label. ←↩
text);

- }];

- }

50

- @end

KIF tests can be automatized to be used in Jenkins, using the WaxSim tool.

4.4 UI Automation with Instruments
The Instruments application, bundled with Xcode, can be used to automate UI

functional testing tasks. It uses JavaScript as the language to create the tests.

Note
At the time of this writing, the latest version of Xcode is 4.6.

Creating UI Tests with Instruments
To create UI tests with Instruments, follow these steps:

1. Select the "Product / Profile" menu entry in Instruments and select the

"Automation" instrument, as shown in Figure 4.4. This will launch the

Instruments application.

2. Click on the "Add" button in the left pane of the Instruments screen, and

select "Create" in the small pop-up menu.

3. Double click on the script name to "Typing".

4. Add the following JavaScript code in the editor window:

Line 1 var target = UIATarget.localTarget();

- var mainWindow = target.frontMostApp().mainWindow()

-

- mainWindow.buttons()["AC"].tap();

https://github.com/square/waxsim

4.4. UI AUTOMATION WITH INSTRUMENTS 63

5

- mainWindow.buttons().firstWithName("1").tap();

- mainWindow.buttons().firstWithName("2").tap();

- mainWindow.buttons().firstWithName("3").tap();

- mainWindow.buttons()["+"].tap();

10 mainWindow.buttons().firstWithName("4").tap();

- mainWindow.buttons().firstWithName("5").tap();

- mainWindow.buttons().firstWithName("6").tap();

- mainWindow.buttons()["="].tap();

-

15 var display = mainWindow.staticTexts()[0];

-

- if (display.value() === "579") {

- UIALogger.logPass("Typing");

- }

20 else {

- UIALogger.logFail("Typing");

- }

Then click on the "Play" button that appears at the bottom of the editor window,

and the UI of the application in the simulator will reproduce the steps of the test,

and will mark the test as passed, as shown in Figure 4.5.

4.4. UI AUTOMATION WITH INSTRUMENTS 64

Figure 4.4: Selecting the automation instrument

4.4. UI AUTOMATION WITH INSTRUMENTS 65

Figure 4.5: Instruments showing a successfully passed test

UI Automation tests can also be created manually, recording the steps required

to perform a particular action. Instruments populates the script window with

the JavaScript code that performs the equivalent operation. To do this, just

click on the "Record" button at the bottom of the screen.

Finally, these tests can also be automated and run from the command line; the

syntax for this, however, is quite cumbersome:

Line 1 instruments -t /Applications/Xcode.app/Contents/Applications/ ←↩
Instruments.app/Contents/PlugIns/AutomationInstrument. ←↩
bundle/Contents/Resources/Automation.tracetemplate "~/ ←↩
Library/Application Support/iPhone Simulator/6.0/ ←↩
Applications/5B8FC7C7-3384-4A78-867E-D2D07582B5DB/ ←↩
InstrumentsAutomation.app" -e UIASCRIPT Typing.js

Pay attention to insert the proper path to the application and to the JavaScript

file, in order to be able to execute the test. The output looks like this (edited for

brevity):

Line 1 Debug: target.frontMostApp().mainWindow().buttons()["AC"].tap()

- Debug: target.frontMostApp().mainWindow().buttons()["1"].tap()

- Debug: target.frontMostApp().mainWindow().buttons()["2"].tap()

4.5. CONCLUSION 66

- Debug: target.frontMostApp().mainWindow().buttons()["3"].tap()

5 Debug: target.frontMostApp().mainWindow().buttons()["+"].tap()

- Debug: target.frontMostApp().mainWindow().buttons()["4"].tap()

- Debug: target.frontMostApp().mainWindow().buttons()["5"].tap()

- Debug: target.frontMostApp().mainWindow().buttons()["6"].tap()

- Debug: target.frontMostApp().mainWindow().buttons()["="].tap()

10 Pass: Typing

- Instruments Trace Complete (Duration : 16.224550s; Output : ←↩
instrumentscli0.trace)

4.5 Conclusion
Frank and Calabash represent a quantum leap in terms of UI testing for iOS

applications, allowing developers to write testing scenarios in a language close

to that of human beings, while at the same time allowing for automated tests of

the functionality of a UI.

KIF provides a really complex solution that involves lots of boilerplate code, and

requires applications to use the accesibility features of iOS in every application

where it is used.

Finally, Instruments allows a greater level of flexibility in the definition of tests,

but it uses a JavaScript API that is not very well documented.

Mobile Application Testing 67 / 122

Part II

Testing Android Applications

Mobile Application Testing 68 / 122

5
Defensive Coding Techniques for Android

This chapter will describe some common techniques, tips and tricks to write

high-quality Java code in your Android projects.

5.1 Exceptions
Java has a well-defined exception handling mechanism, but it takes some time

to learn to use it effectively. Its misuse can cause trouble to both users and

other members of the team.

Types of Exceptions
Java has two categories of exceptions: checked and unchecked. The difference

between both is that code advertising checked exceptions in the method signa-

ture must be wrapped in try / catch / finally statements by developers.

Unchecked exceptions represents errors which are not recoverable.

Exception Hierarchy
Figure 5.1 shows the hierarchy of exception classes in Java. All errors and

exceptions inherit from Throwable; errors are unchecked, as are instances of

RuntimeException. Developers are expected to recover from checked excep-

tions safely.

5.1. EXCEPTIONS 69

Figure 5.1: Exception class hierarchy in Java

Note
Java and Objective-C use similar names for two opposite concepts;
NSException is similar to Error (it represents non-recoverable situations), while
NSError is similar to Exception (it indicates a recoverable error).

Exception Handling Guidelines
To avoid having code sprinkled with a myriadd of try / catch / finally

statements, it is recommended to follow the following best practices:

• Catch exceptions as close to the user as possible.

• Code that is meant for reuse (libraries or shared code among multiple ap-

plications) should not try to do error handling. It can, however, translate

technology-specific exceptions (usually checked) into unchecked, generic ones;

as a canonical example, API code could wrap a FileNotFoundException (checked)

into a RuntimeException that would ultimately be thrown.

• Always report exceptions, and report only once. Do not leave empty catch

blocks in your code, and do not rethrow after doing something with the ex-

5.2. ASSERTIONS 70

ception (like logging). Particularly in Android, exceptional situations might be

interesting for the end user, and should be reported.

• Prefer toasts for unimportant information, and only use dialogs for important

notifications that require the attention of the user.

5.2 Assertions
Use the assert keyword in your programs to test for particular situations during

development, and run production code with assertions turned off:

Line 1 public int divide(int a, int b) throws IllegalArgumentException {

- assert b != 0 : "The second parameter should not be zero!";

-

- if (b == 0) {

5 this.setLastResult(0);

- throw new IllegalArgumentException("Argument ’b’ is 0");

- }

-

- this.setLastResult(a / b);

10 return this.getLastResult();

- }

Even with assertions off, the code documents the fact that b is not expected to

be zero in this context.

5.3 The Monkey
The Android Monkey is a program that runs on your emulator or device and

generates pseudo-random streams of user events such as clicks, touches, or

gestures, as well as a number of system-level events. You can use the Monkey

to stress-test applications that you are developing, in a random yet repeatable

manner.

The Monkey is a command-line tool that that you can run on any emulator in-

stance or on a device. It sends a pseudo-random stream of user events into the

system, which acts as a stress test on the application software you are develop-

ing.

The Monkey includes a number of options, but they break down into four pri-

mary categories:

• Basic configuration options, such as setting the number of events to attempt.

http://developer.android.com/tools/help/monkey.html

5.3. THE MONKEY 71

• Operational constraints, such as restricting the test to a single package.

• Event types and frequencies.

• Debugging options.

When the Monkey runs, it generates events and sends them to the system. It

also watches the system under test and looks for three conditions, which it treats

specially:

• If you have constrained the Monkey to run in one or more specific packages, it

watches for attempts to navigate to any other packages, and blocks them.

• If your application crashes or receives any sort of unhandled exception, the

Monkey will stop and report the error.

• If your application generates an application not responding error, the Monkey

will stop and report the error.

Depending on the verbosity level you have selected, you will also see reports on

the progress of the Monkey and the events being generated.

The monkey can be launched from the command line:

Line 1 #!/usr/bin/env sh

-

- # This utility runs the Android Monkey

-

5 # Variable pointing to the location of the Android SDK

- ANDROID_SDK=/Applications/Android/sdk

- LOG=monkey.log

-

- if [-d "$LOG"]; then

10 rm $LOG

- fi

-

- $ANDROID_SDK/platform-tools/adb shell monkey -p com.akosma.calculator ←↩
--throttle 100 -s 43686 -v 50000 | tee $LOG

The parameters of the adb shell monkey command are the following:

• -p specifies the package name to test.

• --throttle specifies the delay in milliseconds between the events.

• -s specifies a seed value for the random number generator. This value should

be changed every so often, to generate different interactions on the application

UI.

5.3. THE MONKEY 72

• -v specifies the verbose option.

• 50000 is the number of events to be simulated.

The Monkey requires an instance of the Emulator running, with the application

specified in the -p parameter installed in it. The emulator can be run from the

command line using the script below:

Line 1 #!/usr/bin/env sh

-

- # This utility runs the Android Emulator

-

5 # Variable pointing to the location of the Android SDK

- ANDROID_SDK=/Applications/Android/sdk

-

- # Name of the VMD defined in your system

- VMD_NAME=Emulator

10

- $ANDROID_SDK/tools/emulator -avd $VMD_NAME

The output of the Monkey tool looks like this (edited for brevity):

Line 1 ...

Line 2 :Sending Touch (ACTION_DOWN): 0:(310.0,195.0)

- :Sending Touch (ACTION_UP): 0:(398.46033,164.18097)

- :Sending Trackball (ACTION_MOVE): 0:(-1.0,2.0)

5 :Sending Touch (ACTION_DOWN): 0:(785.0,685.0)

- :Sending Touch (ACTION_UP): 0:(800.0,763.3364)

- :Sending Trackball (ACTION_MOVE): 0:(-1.0,-3.0)

- :Sending Trackball (ACTION_MOVE): 0:(-1.0,-2.0)

- //[calendar_time:2013-01-29 14:08:36.853 system_uptime:106295]

10 // Sending event #100

- :Sending Touch (ACTION_DOWN): 0:(274.0,1077.0)

- :Sending Touch (ACTION_UP): 0:(270.2971,1078.4357)

- :Sending Touch (ACTION_DOWN): 0:(28.0,84.0)

- :Sending Touch (ACTION_UP): 0:(11.232578,80.12936)

15 :Sending Touch (ACTION_DOWN): 0:(547.0,1189.0)

- :Sending Touch (ACTION_UP): 0:(629.37836,1216.0)

- :Sending Trackball (ACTION_MOVE): 0:(-3.0,-5.0)

- :Sending Touch (ACTION_DOWN): 0:(209.0,113.0)

- ...

This log file will report any crashes or anomalies in the execution of the applica-

tion.

5.4. PERFORMANCE TIPS 73

Note
Monkey sometimes causes problems with the adb server. If needed, use
the following commands to restart the adb server: adb kill-server; adb

start-server.

5.4 Performance Tips
The Android documentation features several useful application performance tips

that are worth enumerating here:

1. Avoid Creating Unnecessary Objects

2. Prefer Static Over Virtual

3. Use Static Final For Constants

4. Avoid Internal Getters/Setters

5. Use Enhanced For Loop Syntax

6. Consider Package Instead of Private Access with Private Inner Classes

7. Avoid Using Floating-Point

8. Know and Use the Libraries

9. Use Native Methods Carefully

10. Know And Use The Libraries

11. Use Native Methods Judiciously

5.5 Miscellaneous Tips
This section presents a series of simple tips and tricks that can be useful to

create quality Android applications.

StrictMode
StrictMode is a developer tool which detects things you might be doing by acci-

dent and brings them to your attention so you can fix them.

StrictMode is most commonly used to catch accidental disk or network access

on the application’s main thread, where UI operations are received and ani-

mations take place. Keeping disk and network operations off the main thread

http://developer.android.com/training/articles/perf-tips.html
http://developer.android.com/reference/android/os/StrictMode.html

5.5. MISCELLANEOUS TIPS 74

makes for much smoother, more responsive applications. By keeping your appli-

cation’s main thread responsive, you also prevent ANR dialogs from being shown

to users.

To enable StrictMode, extend your project adding a custom subclass of the

android.app.Application class:

Line 1 package com.akosma.calculator;

-

- import android.app.Application;

- import android.os.Build;

5 import android.os.StrictMode;

-

- public class CalcApplication extends Application {

-

- @Override

10 public void onCreate() {

- super.onCreate();

-

- if (Build.VERSION.SDK_INT >= 9 && isDebug()) { ←↩
// w1

Line 14 StrictMode.enableDefaults();

15

- // StrictMode.setThreadPolicy(new StrictMode. ←↩
ThreadPolicy.Builder()

- // .detectDiskReads(). ←↩
detectDiskWrites().detectNetwork()

- // .penaltyLog().build());

- // StrictMode.setVmPolicy(new StrictMode. ←↩
VmPolicy.Builder()

20 // .detectLeakedSqlLiteObjects() ←↩
.detectLeakedClosableObjects()

- // .penaltyLog().penaltyDeath(). ←↩
build()); w2

Line 22 }

- }

-

25 private boolean isDebug() {

- boolean isDebug = ("google_sdk".equals(Build.PRODUCT) ←↩
)

- || ("sdk".equals(Build.PRODUCT));

- return isDebug;

- }

30 }

5.5. MISCELLANEOUS TIPS 75

w1 We only set the StrictMode when executing our application in the emula-

tor; this code should not be executed in production applications.w2 You can also call "detectAll()" for detecting all problems.

To use android.os.StrictMode, remember to set your minimum SDK version

to 9 in your AndroidManifest.xml file. Also, include the application class in

the same file, so that it is loaded by the application on startup:

Line 1 <?xml version="1.0" encoding="utf-8"?>

- <manifest xmlns:android="http://schemas.android.com/apk/res/android"

- package="com.akosma.calculator"

- android:versionCode="1"

5 android:versionName="1.0" >

-

- <uses-sdk

- android:minSdkVersion="9"

- android:targetSdkVersion="17" /> <!-- w1 -->

10

- <application

- android:allowBackup="true"

- android:icon="@drawable/ic_launcher"

- android:label="@string/app_name"

15 android:theme="@style/AppTheme"

- android:name="com.akosma.calculator.CalcApplication"> <!-- ←↩w2 -->

Line 17 <activity

- android:name="com.akosma.calculator.MainActivity"

- android:label="@string/app_name" >

20 <intent-filter>

- <action android:name="android.intent.action.MAIN" />

- <category android:name="android.intent.category. ←↩
LAUNCHER" />

- </intent-filter>

- </activity>

25 </application>

- </manifest>

w1 Here we set the minimum SDK requirement for the application.w2 Here we specify the name of our custom application class.

5.6. CONCLUSION 76

Give Threads a Name
Give every thread a meaningful name. This includes thread pool threads. It

makes stack dumps much more meaningful. It takes a little more effort to give

a meaningful name to even thread pool threads, but if one thread pool has a

problem in a long running application, the developer can cause a stack dump to

occur, grab the logs, and without having to interrupt a running system you can

tell which threads are deadlocked, leaking, growing, etc.

Immutable Objects
The Java API has no concept of immutable objects. The final modifier can be

used in this case.

For example, if a getter returns a List object, make its getter return an im-

mutable view on it, which blocks client code from inadvertently modifying it,

using the Collections.unmodifiableList() method:

Line 1 public List<T> getList() {

- return Collections.unmodifiableList(list);

- }

More
• Sometimes it is useful to use final on local variables to make sure they never

change their value. I found this useful in ugly, but necessary loop constructs.

Its just to easy to accidently reuse a variable even though it is mend to be a

constant.

• Use defense copying in your getters. Unless you return a primitive type or a

immutable object make sure you copy the object to not violate encapsulation.

• Never use clone, use a copy constructor.

• Learn the contract between equals and hashCode. Very often the former is

overridden, but not the latter.

• Rather then var.equals("whatever") use "whatever".equals(var). That

way, if var == null there will be no NullPointerException thrown.

5.6 Conclusion
This chapter has introduced some useful concepts to write better Android appli-

cations.

Mobile Application Testing 77 / 122

6
Unit Testing Android Applications

This chapter will introduce basic techniques used to unit test Android applica-

tions.

6.1 JUnit
Testing for Android can be classified into tests which only require the JVM and

tests which require the Android system.

If you want to run standard JUnit tests on the JVM you cannot access Android

classes, because all methods in android.jar will throw a RuntimeException.

This is because android.jar does not contain the Android framework code but

only stubs for the type signatures, methods, types, etc. The android.jar will

not be bundled with your application, once you application is deployed on the

device it will use the real JAR on the device.

Unfortunately this makes a priori impossible to test Android framework classes

on a pure JVM. To test Android classes you need to run them on an Android

device or emulator. This unfortunately makes the execution of tests longer.

However, the Robolectric framework described in the following section tries to

overcome this situation.

JUnit is the standard unit testing framework for Java applications. It is bundled

with the official Android SDK distribution.

The preferred way for organizing tests is to create a separate test project for

them. There are wizards for creating test projects; then can be found under "File

/ New / Other" and then select "Android / Android Test Project" in the dialog.

http://junit.org

6.1. JUNIT 78

The wizards add the project which should be tested as dependency to the test

project. It also create a version of the AndroidManifest.xml file which specifies

that the android.test.runner test library should be used and it specifies an

instrumentation.

Line 1 <?xml version="1.0" encoding="utf-8"?>

- <manifest xmlns:android="http://schemas.android.com/apk/res/android"

- package="com.akosma.calculator.test"

- android:versionCode="1"

5 android:versionName="1.0" >

-

- <uses-sdk android:minSdkVersion="8" />

-

- <instrumentation

10 android:name="android.test.InstrumentationTestRunner"

- android:targetPackage="com.akosma.calculator" /> w1
Line 12

- <application

- android:icon="@drawable/ic_launcher"

15 android:label="@string/app_name" >

- <uses-library android:name="android.test.runner" />

- </application>

-

- </manifest>

w1 This line specifies the package to be tested by the project.

A test project specifies the package of the application to test in the AndroidManifest.xml

file the under android:targetPackage attribute.

Adding Tests
Android supports both JUnit 3 and JUnit 4; in the former case, your test needs

to extend the AndroidTestCase class, and all test methods must start with the

prefix test.

Instrumentation allows to control a visible part of the application, e.g. an Activ-

ity. For this your testcase would extend ActivityInstrumentationTestCase2.

This instrumentation class allows you to start and stop activities, run actions

on the user interface thread, send key events and more.

To create a new test case, right-click on the package of your test project (un-

der the src folder) and select "New / JUnit Test Case". Figure 6.1 shows the

corresponding configuration dialog.

6.1. JUNIT 79

Figure 6.1: Creating a new JUnit test

We are going to add the code required for testing our integer calculator class:

Line 1 package com.akosma.calculator.test;

-

- import android.test.AndroidTestCase;

- import com.akosma.calculator.IntegerCalculator;

5

- public class IntegerCalculatorTest extends AndroidTestCase {

6.1. JUNIT 80

-

- protected IntegerCalculator calc;

-

10 protected void setUp() throws Exception {

- super.setUp();

- this.calc = new IntegerCalculator();

- }

-

15 protected void tearDown() throws Exception {

- super.tearDown();

- }

-

- public void testCalcShouldNotBeNil() {

20 assertNotNull("The calculator should not be nil", ←↩
this.calc);

- }

-

- public void testCalcCanAdd() {

- int result = this.calc.add(3, 5);

25 assertEquals("The result should be the 3 plus 5", 3 + ←↩
5, result);

- }

-

- public void testCalcCanSubstract() {

- int result = this.calc.substract(3, 5);

30 assertEquals("The result should be the 3 minus 5", 3 ←↩
- 5, result);

- }

-

- public void testCalcCanMultiply() {

- int result = this.calc.multiply(3, 5);

35 assertEquals("The result should be the 3 times 5", 3 ←↩
* 5, result);

- }

-

- public void testCalcCanDivide() {

- int result = this.calc.divide(8, 5);

40 assertEquals("The result should be the 8 divided by 5 ←↩
", 8 / 5, result);

- }

-

- public void testCalcRaisesExceptionIfDivideByZero() {

- try {

6.1. JUNIT 81

45 this.calc.divide(4, 0);

- fail("should’ve thrown an exception!"); // ←↩w1
Line 47 } catch (IllegalArgumentException e) {

- // success!

- }

50 }

- }

w1 In JUnit 4 and later, you can use the @Test annotation with the ExpectedException

rule, like this: @Test(expected = IllegalArgumentException.class).

Once this is done, click on the "Run" button on Eclipse, and watch the tests

being run. You will see the results in the sidebar, as shown in Figure 6.2.

Figure 6.2: JUnit test run results

6.1. JUNIT 82

Testing Activities
You can use this same framework to test your application in a functional way,

that is, driving the use of your activity as if a user was playing with the applica-

tion. We create a subclass of ActivityInstrumentationTestCase2 for that:

Line 1 package com.akosma.calculator.test;

-

- import android.test.ActivityInstrumentationTestCase2;

- import android.test.UiThreadTest;

5 import android.widget.Button;

- import android.widget.GridView;

- import android.widget.TextView;

- import com.akosma.calculator.MainActivity;

- import com.akosma.calculator.R;

10

- public class MainActivityTest extends ←↩
ActivityInstrumentationTestCase2<MainActivity> {

-

- public MainActivityTest() {

- super(MainActivity.class);

15 }

-

- public void testHasBlankDisplay() {

- TextView textView = (TextView) getActivity(). ←↩
findViewById(R.id.txtDisplay);

- CharSequence text = textView.getText();

20 assertTrue("Upon start, the display should be empty", ←↩
text.equals("0"));

- }

-

- @UiThreadTest // w1
Line 24 public void testAdd123To456() {

25 TextView textView = (TextView) getActivity(). ←↩
findViewById(R.id.txtDisplay);

- GridView keypad = (GridView) getActivity(). ←↩
findViewById(R.id.grdButtons);

- Button one = (Button)keypad.getChildAt(8);

- Button two = (Button)keypad.getChildAt(9);

- Button three = (Button)keypad.getChildAt(10);

30 Button four = (Button)keypad.getChildAt(4);

- Button five = (Button)keypad.getChildAt(5);

- Button six = (Button)keypad.getChildAt(6);

- Button add = (Button)keypad.getChildAt(15);

6.2. ROBOLECTRIC 83

- Button equal = (Button)keypad.getChildAt(14);

35

- one.performClick();

- two.performClick();

- three.performClick();

-

40 CharSequence text = textView.getText();

- assertTrue("The display should say 123", text.equals(←↩
"123"));

-

- add.performClick();

-

45 text = textView.getText();

- assertTrue("The display should say 0", text.equals("0 ←↩
"));

-

- four.performClick();

- five.performClick();

50 six.performClick();

-

- text = textView.getText();

- assertTrue("The display should say 456", text.equals(←↩
"456"));

-

55 equal.performClick();

-

- text = textView.getText();

- assertTrue("The display should say 579", text.equals(←↩
"579"));

- }

60 }

w1 The @UiThreadTest annotation is required here to avoid runtime crashes,

because we are calling the performClick() method on Button instances,

and this can only be done in the main UI thread.

The result of this execution is shown in Figure 6.2.

6.2 Robolectric
Robolectric is a unit test framework that mocks the Android SDK jar so that

tests run inside the JVM instead of running in the emulator, overcoming the

limitation described at the beginning of the previous section.

http://pivotal.github.com/robolectric/index.html

6.2. ROBOLECTRIC 84

Installation
The Robolectric documentation states that it requires Maven, but it is actually

possible to use it without Maven. Just follow these steps:

1. Create a separate project for testing purposes. Do not create an Android

project, or an Android JUnit project. Instead, create a plain old Java

Project. (Right click on ‘Package Explorer’, ‘New’ > ‘Java Project’).

2. Name your Robolectric test project something nice, that parallels the main

project you are trying to test. Under ‘Project layout’, choose the default

‘Create separate folders for sources and class files’.

3. Hit Next, to get to the Java build settings.

• On the ‘Source’ tab, the default ‘src’ folder is where your test cases will

go.

• On the ‘Projects’ tab, add your main Android project as a required project

on the build path.

• On the ‘Libraries’ tab, you will need to add the Android jars, JUnit jars,

and the Robolectric jar. Copy the following jar files to the libs folder of

your new project, and add them to this tab. In my case, I created the

project first, then copied the jars into the libs folder, then returned to

this tab in Project settings to add the dependencies.

• android.jar (from the android sdk root/platforms/android-8 folder)

• maps.jar (from the Google Play SDK, see note below for information)

• robolectric-all.jar (downloaded from the Robolectric github page)

• junit.jar (downloaded from the junit.org website, version 4.10 only!)

4. Hit ‘Finish’. Your project will be created.

5. At this point, move into src, then create a test package, and a test case

class.

6. Set up Run Configurations for your test Project:

• From the Run menu, choose ‘Run Configurations.’ Create a new JUnit

test configuration. Do not create an ‘Android JUnit Test’. Name your

configuration, choose JUnit 4 for the test runner. Make sure ‘Run all

tests in the selected project, package or source folder’ is checked, and

choose the name of your test project.

• At the bottom of the dialog, there may be a prompt, “Multiple launchers

available — Select one. . . ”. Click the ‘Select other. . . ’ link, checoject’s

6.2. ROBOLECTRIC 85

working directory to the folder containing your main test project. Select

the ‘Arguments’ tab. At the bottom under ‘Working Directory’, select the

‘Other’ radio button. Click the ‘Workspace. . . ’ button and select the

Android project that you are running tests against.

• click ‘Run’ and your configuration will be saved and your tests run.

Note
Robolectric has a direct dependency on the Google Maps API, so you will
need to install it using the Android SDK manager, which is available running the
sdk/tools/android sdk command line in the root of your Android folder. Fig-
ure 6.3 shows which option to select. The procedure is explained in detail in the
Setup documentation for the Google Play SDK.
Also, do not use JUnit 4.11, instead use JUnit 4.10.

Figure 6.3: Android SDK Manager

Adding Tests
After doing all this, a Robolectric test looks like this:

http://developer.android.com/google/play-services/setup.html

6.2. ROBOLECTRIC 86

Line 1 package com.akosma.calculator.robolectric;

-

- import org.junit.After;

- import org.junit.Before;

5 import org.junit.Test;

- import org.junit.runner.RunWith;

-

- import com.akosma.calculator.IntegerCalculator;

- import com.xtremelabs.robolectric.RobolectricTestRunner;

10

- import static org.hamcrest.CoreMatchers.equalTo;

- import static org.junit.Assert.assertNotNull;

- import static org.junit.Assert.assertThat;

- import static org.junit.Assert.fail;

15

- @RunWith(RobolectricTestRunner.class)

- public class IntegerCalculatorTest {

-

- protected IntegerCalculator calc;

20

- @Before

- public void setUp() throws Exception {

- this.calc = new IntegerCalculator();

- }

25

- @After

- public void tearDown() throws Exception {

- }

-

30 @Test

- public void testCalcShouldNotBeNil() {

- assertNotNull("The calculator should not be nil", ←↩
this.calc);

- }

-

35 @Test

- public void testCalcCanAdd() {

- int result = this.calc.add(3, 5);

- assertThat("The result should be the 3 plus 5", 3 + ←↩
5, equalTo(result));

- }

40

6.2. ROBOLECTRIC 87

- @Test

- public void testCalcCanSubstract() {

- int result = this.calc.substract(3, 5);

- assertThat("The result should be the 3 minus 5", 3 - ←↩
5, equalTo(result));

45 }

-

- @Test

- public void testCalcCanMultiply() {

- int result = this.calc.multiply(3, 5);

50 assertThat("The result should be the 3 times 5", 3 * ←↩
5, equalTo(result));

- }

-

- @Test

- public void testCalcCanDivide() {

55 int result = this.calc.divide(8, 5);

- assertThat("The result should be the 8 divided by 5", ←↩
8 / 5, equalTo(result));

- }

-

- @Test(expected=IllegalArgumentException.class)

60 public void testCalcRaisesExceptionIfDivideByZero() {

- this.calc.divide(4, 0);

- fail("should’ve thrown an exception!");

- }

- }

As shown above, the Robolectric library uses JUnit 4 tests.

You can also, up to a certain point, use Robolectric for functional testing:

Line 1 package com.akosma.calculator.robolectric;

-

- import com.xtremelabs.robolectric.RobolectricTestRunner;

-

5 import org.junit.After;

- import org.junit.Before;

- import org.junit.Test;

- import org.junit.runner.RunWith;

-

10 //import android.widget.Button;

- //import android.widget.GridView;

- import android.widget.TextView;

6.2. ROBOLECTRIC 88

- import android.os.Bundle;

-

15 import com.akosma.calculator.MainActivity;

- import com.akosma.calculator.R;

-

- //import static com.xtremelabs.robolectric.Robolectric.clickOn;

- import static org.hamcrest.CoreMatchers.equalTo;

20 import static org.junit.Assert.assertThat;

-

- //import static org.junit.Assert.assertTrue;

-

- @RunWith(RobolectricTestRunner.class)

25 public class MainActivityTest {

-

- private MainActivity activity;

- private TextView textView;

-

30 @Before

- public void setUp() throws Exception {

-

- activity = new MainActivity();

- activity.onCreate(new Bundle());

35 textView = (TextView) activity.findViewById(R.id. ←↩
txtDisplay);

- }

-

- @After

- public void tearDown() throws Exception {

40 }

-

- @Test

- public void testHasBlankDisplay() {

- String text = (String) textView.getText();

45 assertThat("Upon start, the display should be empty", ←↩
text,

- equalTo("0"));

- }

-

- @Test

50 public void testAdd123To456() {

-

- // Unfortunately Robolectric does not appear

- // to work with GridViews + AdaptorsÉ

6.2. ROBOLECTRIC 89

- // This code remains in suspension for the moment.

55

- // GridView keypad = (GridView) activity.findViewById ←↩
(R.id.grdButtons);

- // Button one = (Button) keypad.getChildAt(8);

- // Button two = (Button) keypad.getChildAt(9);

- // Button three = (Button) keypad.getChildAt(10);

60 // Button four = (Button) keypad.getChildAt(4);

- // Button five = (Button) keypad.getChildAt(5);

- // Button six = (Button) keypad.getChildAt(6);

- // Button add = (Button) keypad.getChildAt(15);

- // Button equal = (Button) keypad.getChildAt(14);

65

- // clickOn(one);

- // clickOn(two);

- // clickOn(three);

- //

70 // CharSequence text = textView.getText();

- // assertTrue("The display should say 123", text. ←↩
equals("123"));

- //

- // clickOn(add);

- //

75 // text = textView.getText();

- // assertTrue("The display should say 0", text.equals ←↩
("0"));

- //

- // clickOn(four);

- // clickOn(five);

80 // clickOn(six);

- //

- // text = textView.getText();

- // assertTrue("The display should say 456", text. ←↩
equals("456"));

- //

85 // clickOn(equal);

- //

- // text = textView.getText();

- // assertTrue("The display should say 579", text. ←↩
equals("579"));

- }

90 }

6.3. CONCLUSION 90

Unfortunately, the support of Robolectric for GridView instances is broken at

the time of this writing, and it is impossible to retrieve pointers to the children

Button instances that are set through the KeypadAdapter adapter.

6.3 Conclusion
This chapter has introduced some techniques that can be used to unit test An-

droid applications effectively, using both JUnit and Robolectric.

Mobile Application Testing 91 / 122

7
Functional Testing for Android Apps

This chapter will showcase two different techniques to add functional tests to

Android applications: Calabash-Android and Robotium.

7.1 Calabash-Android
We have previously talked about Calabash in Chapter 4, when we introduced

Frank and Calabash-iOS. The Android version is also built on top of Cucumber

and offers a very similar workflow to the two tools used for iOS apps.

However, the current version of Calabash-Android is under heavy development,

and the instructions in the paragraphs below might not work in the future.

Note
At the time of this writing, the latest version of Calabash-Android is version 0.3.8.

Getting Started
The first thing we are going to do is to install the required libraries; just like in

the case of Calabash-iOS, we are going to use RubyGems for that:

Line 1 gem install calabash-android

Once this is done, cd to the folder where your Android application is located,

and type this command:

Line 1 calabash-android gen

http://cukes.info

7.1. CALABASH-ANDROID 92

This will generate the required folder structure, containing a sample features

file.

Preparing the Android Project
At the time of this writing, the current version of Calabash-Android requires

a few changes in the Android project to run successfully; otherwise, brace for

some errors when running the tests.

1. Make sure that the project is set to use version 7 of the Android SDK as a

minimum.

2. Add the android.permission.INTERNET permission to your application.

Both settings must be specified in the AndroidManifest.xml file:

Line 1 <?xml version="1.0" encoding="utf-8"?>

- <manifest xmlns:android="http://schemas.android.com/apk/res/android"

- package="com.akosma.calculator"

- android:versionCode="1"

5 android:versionName="1.0" >

-

- <uses-sdk

- android:minSdkVersion="7" /> w1
Line 9

10 <application

- android:allowBackup="true"

- android:icon="@drawable/ic_launcher"

- android:label="@string/app_name"

- android:theme="@style/AppTheme" >

15 <activity

- android:name="com.akosma.calculator.MainActivity"

- android:label="@string/app_name" >

- <intent-filter>

- <action android:name="android.intent.action.MAIN" />

20

- <category android:name="android.intent.category. ←↩
LAUNCHER" />

- </intent-filter>

- </activity>

- </application>

25

- <uses-permission android:name="android.permission.INTERNET" /> w2
Line 27

- </manifest>

7.1. CALABASH-ANDROID 93

w1 Minimum version of the Android SDK supported by the application being

tested.w2 Permission to access the internet.

Once you have made these changes, make sure to clean the project build in

Eclipse, and rebuild the project.

Creating a Feature
You can just rename or remove the autogenerated feature, and then create a

new one with the following contents:

Line 1 Feature: Typing numbers

-

- Scenario: Calculate

- Then I press the "1" button

5 Then I press the "2" button

- Then I press the "3" button

- Then I press the " \+ " button

- Then I press the "4" button

- Then I press the "5" button

10 Then I press the "6" button

- Then I press the "=" button

- Then I should see "579"

The default feature syntax is not exactly the same as the one for Calabash-

iOS; however, you can make both systems speak the same language by defining

custom steps. You can see the default list of steps bundled by Calabash-Android

in the project wiki on Github.

Running the Test
Calabash-Android tests are run using the following command

Line 1 calabash-android run bin/CalabashTests.apk

The bin/CalabashTests.apk is the path of the APK file to test.

Warning
Please make sure that the Android Emulator is running before you run
calabash-android run <APK_PATH>.

https://github.com/calabash/calabash-android/blob/master/ruby-gem/lib/calabash-android/canned_steps.md

7.2. ROBOTIUM 94

The command above will run the application in the Android Emulator, executing

each of the steps, one by one. The output of the command should look like this

(edited for brevity):

Line 1 Feature: Typing numbers

-

- Scenario: Calculate # features/typing.feature:3

- 833 KB/s (434707 bytes in 0.509s)

5 858 KB/s (182718 bytes in 0.207s)

- Then I press the "1" button

- Then I press the "2" button

- Then I press the "3" button

- Then I press the " \+ " button

10 Then I press the "4" button

- Then I press the "5" button

- Then I press the "6" button

- Then I press the "=" button

- Then I should see "579"

15

- 1 scenario (1 passed)

- 9 steps (9 passed)

- 1m25.243s

7.2 Robotium
Robotium is an open source functional testing library for Android applications.

It is very simple to set up and use, and allows to create tests using JUnit that

are executed on the emulator, simulating user actions.

These are the advantages of Robotium:

• You can develop powerful test cases, with minimal knowledge of the applica-

tion under test.

• The framework handles multiple Android activities automatically.

• Minimal time needed to write solid test cases.

• Readability of test cases is greatly improved, compared to standard instru-

mentation tests.

• Test cases are more robust due to the run-time binding to GUI components.

• Blazing fast test case execution.

• Integrates smoothly with Maven or Ant to run tests as part of continuous

integration.

http://code.google.com/p/robotium/

7.2. ROBOTIUM 95

Note
At the time of this writing, the latest version of Robotium is 3.6.

How to use
To use Robotium, follow these steps:

• Create a project of type "Android Test Project".

• Add a JUnit Test Case file to the root package of your project, and select

ActivityInstrumentationTestCase2 as the superclass.

• Add the latest Robotium jar in the libs folder of your project, and include it

in the "Java Build Path" properties ("Libraries" tab) or the properties of your

project.

• Add the code for your test:

Line 1 package com.akosma.calculator.test;

-

- import android.test.ActivityInstrumentationTestCase2;

- import android.widget.TextView;

5 import com.jayway.android.robotium.solo.Solo;

- import com.akosma.calculator.MainActivity;

- import com.akosma.calculator.R;

-

- public class FunctionalTest extends ActivityInstrumentationTestCase2< ←↩
MainActivity> {

10 private Solo solo;

-

- public FunctionalTest() {

- super(MainActivity.class);

- }

15

- protected void setUp() throws Exception {

- super.setUp();

- solo = new Solo(getInstrumentation(), getActivity());

- }

20

- protected void tearDown() throws Exception {

- super.tearDown();

- }

-

25 public void testHasBlankDisplay() {

7.2. ROBOTIUM 96

- TextView textView = (TextView) solo.getView(R.id. ←↩
txtDisplay);

- CharSequence text = textView.getText();

- assertTrue("Upon start, the display should be empty", ←↩
text.equals("0"));

- }

30

- public void testAdd123To456() {

- solo.clickOnButton("1");

- solo.clickOnButton("2");

- solo.clickOnButton("3");

35

- TextView textView = (TextView) solo.getView(R.id. ←↩
txtDisplay);

- CharSequence text = textView.getText();

- assertTrue("Display should show 123", text.equals(" ←↩
123"));

-

40 solo.clickOnButton(" \\+ ");

- text = textView.getText();

- assertTrue("Display should show 0", text.equals("0")) ←↩
;

-

- solo.clickOnButton("4");

45 solo.clickOnButton("5");

- solo.clickOnButton("6");

- text = textView.getText();

- assertTrue("Display should show 456", text.equals(" ←↩
456"));

-

50 solo.clickOnButton("=");

- text = textView.getText();

- assertTrue("Display should show 579", text.equals(" ←↩
579"));

- }

- }

Finally, right-click on the FunctionalTest.java file and choose "Run As / An-

droid JUnit Test". The emulator will launch and the results of the test will be

shown, as usual, in the JUnit pane in Eclipse.

7.3. CONCLUSION 97

7.3 Conclusion
Calabash-Android provides a mechanism based on the popular Cucumber frame-

work, and offers a set of functionality very similar to that of Cucumber-iOS,

becoming a very interesting choice for teams working in cross-platform mobile

development.

On the other hand, Robotium offers a handy way to extend JUnit tests to per-

form functional testing using a very simple API, with an extremely simple setup.

Mobile Application Testing 98 / 122

Colophon

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this

book, and the publisher was aware of a trademark claim, the designations have

been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but

make no expressed or implied warranty of any kind and assume no responsibil-

ity for errors or omissions. No liability is assumed for incidental or consequential

damages in connection with or arising out of the use of the information or pro-

grams contained herein.

Copyright © 2009-2013 akosma software. All rights reserved. Written in Switzer-

land. This publication is protected by copyright, and permission must be ob-

tained from the publisher prior to any prohibited reproduction, storage in a re-

trieval system, or transmission in any form or by any means, electronic, mechan-

ical, photocopying, recording, or likewise. For information regarding permis-

sions, or discounts for bulk purchases and special sales, please contact Adrian

Kosmaczewski (+ 41 78 739 47 76, books@akosma.com)

Visit our website at akosma.com.

Created using Asciidoc. Kindle version generated with KindleGen by Amazon.

Text typed on Vim and MacVim 7.3 on Mac OS X 10.8.2.

First edition, January 2013.

mailto:books@akosma.com
http://akosma.com/

Mobile Application Testing 99 / 122

Bibliography

Books
[1] [sommerville] Ian Sommerville. Software Engineering, Eigth Edi-

tion. Addison Wesley. 2007. ISBN 978-0-321-31379-9.

[2] [mcconnell] Steve McConnell. Code Complete, Second Edition.

Microsoft Press. 2004. ISBN 0-7356-1967-0.

[3] [richardson] Jared Richardson & William Gwaltney Jr. Ship It!:

A Practical Guide to Successful Software Projects. The Pragmatic

Programmers. 2005. ISBN 978-0-9745-1404-8.

[4] [gunderloy] Mike Gunderloy. Coder to Developer. Sybex. 2004.

ISBN 0-7821-4327-X.

[5] [meyers] Scott Meyers. Effective C++, Third Edition. Addison-

Wesley. 2005. ISBN 978-0-321-33487-9.

[6] [lee] Graham Lee. Test-Driven iOS Development. Addison-Wesley.

2012. ISBN 978-0-321-77418-7.

[7] [steinberg] Daniel Steinberg. Test Driving iOS Development with

Kiwi. Dim Sum Thinking, Inc. 2012. ISBN 978-0-9830669-0-3.

Tools
[8] ACRA

[9] Android Tools Download

[10] Cedar

[11] CocoaPods

[12] FindBugs

[13] GHUnit

http://www.software-engin.com/books
http://www.software-engin.com/books
http://www.cc2e.com/Default.aspx
http://pragprog.com/book/prj/ship-it
http://pragprog.com/book/prj/ship-it
http://codertodeveloper.com
http://www.aristeia.com/books.html
http://www.pearsonhighered.com/educator/product/TestDriven-iOS-Development/9780321774187.page
https://itunes.apple.com/us/book/test-driving-ios-development/id502345143?mt=11
https://itunes.apple.com/us/book/test-driving-ios-development/id502345143?mt=11
http://acra.ch
http://developer.android.com/sdk/index.html
https://github.com/pivotal/cedar
http://cocoapods.org
http://findbugs.sourceforge.net
https://github.com/gabriel/gh-unit

ARTICLES 100

[14] Google Toolbox for Mac

[15] HockeyKit

[16] KIF

[17] Kiwi

[18] Roboelectric

[19] Specta

[20] XcodeCoverage

[21] JUnit

[22] The Cocotron

[23] GNUStep

[24] The LLVM Compiler Infrastructure

[25] clang: a C language family frontend for LLVM

[26] Clang Static Analyzer

[27] Robotium

[28] AndroVM

Articles
[29] iOS Debugging Magic

[30] Improved logging in Objective-C

[31] Understanding and Analyzing iOS Application Crash Reports

[32] UI/Application Exerciser Monkey

[33] Activity Testing Tutorial

[34] Performance Tips

[35] Code Style Guidelines for Contributors

[36] Android Application Error Reports

[37] Favorite (Clever) Defensive Programming Best Practices

[38] How do I set up NSZombieEnabled in Xcode 4?

[39] Objective-C: Assertion vs. Exception vs. Error

[40] How do you implement global iPhone Exception Handling?

http://code.google.com/p/google-toolbox-for-mac/
https://github.com/TheRealKerni/HockeyKit
https://github.com/square/KIF
https://github.com/allending/Kiwi
http://pivotal.github.com/robolectric/index.html
https://github.com/petejkim/specta
https://github.com/jonreid/XcodeCoverage
http://junit.org
http://www.cocotron.org
http://www.gnustep.org
http://llvm.org
http://clang.llvm.org
http://clang-analyzer.llvm.org
http://code.google.com/p/robotium/
http://androvm.org/
http://developer.apple.com/library/ios/#technotes/tn2239/_index.html
http://developer.apple.com/library/ios/#qa/qa1669/_index.html
https://developer.apple.com/library/ios/#technotes/tn2008/tn2151.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/testing/activity_test.html
http://developer.android.com/training/articles/perf-tips.html
http://source.android.com/source/code-style.html
http://android-developers.blogspot.ch/2010/05/google-feedback-for-android.html
http://stackoverflow.com/questions/490420/favorite-clever-defensive-programming-best-practices
http://stackoverflow.com/questions/2190227/how-do-i-set-up-nszombieenabled-in-xcode-4
http://stackoverflow.com/questions/5009597/objective-c-assertion-vs-exception-vs-error
http://stackoverflow.com/questions/1282364/how-do-you-implement-global-iphone-exception-handling

BIBLIOGRAPHY 101

[41] “Debug certificate expired” error in Eclipse Android plugins

[42] Getting a useful stack trace from NSExcep-

tion#callStackReturnAddresses

[43] Writing Your First Frank Test

[44] Debugging Core Data Objects

[45] TDD vs BDD

[46] OCUnit

[47] Kiwi Library

[48] Introduction to Android development : TouchCalculator

[49] Tracking Down Crashes with Exception Breakpoints

[50] A few Android tips

[51] Android Testing with the Android Test framework, Robotium,

Monkey and Robolectric

[52] Be careful when using JUnit’s expected exceptions

[53] Android Unit Testing in Robolectric, using Eclipse

[54] Calabash-Android Canned Steps

[55] Let’s Build NSObject

[56] Practical Blocks

[57] Network Link Conditioner in Lion

http://stackoverflow.com/questions/2194808/debug-certificate-expired-error-in-eclipse-android-plugins
http://rel.me/2008/12/30/getting-a-useful-stack-trace-from-nsexception-callstackreturnaddresses/
http://rel.me/2008/12/30/getting-a-useful-stack-trace-from-nsexception-callstackreturnaddresses/
http://blog.thepete.net/blog/2012/06/24/writing-your-first-frank-test/
http://furbo.org/2012/06/28/debugging-core-data-objects/
http://blog.mattwynne.net/2012/11/20/tdd-vs-bdd/
http://cocoadev.com/wiki/OCUnit
http://cocoamanifest.net/articles/2011/04/kiwi-lib.html
http://www.codeproject.com/Articles/104931/Introduction-to-Android-development-TouchCalculato
http://mobiledevelopertips.com/xcode/xcode-4-tracking-down-crashes-with-exception-breakpoints.html
http://www.javaprogrammingforums.com/blogs/christopherlowe/32-few-android-tips.html
http://www.vogella.com/articles/AndroidTesting/article.html
http://www.vogella.com/articles/AndroidTesting/article.html
http://jakegoulding.com/blog/2012/09/26/be-careful-when-using-junit-expected-exceptions/
http://digitaldumptruck.jotabout.com/?p=749
https://github.com/calabash/calabash-android/blob/master/ruby-gem/lib/calabash-android/canned_steps.md
http://www.mikeash.com/pyblog/friday-qa-2013-01-25-lets-build-nsobject.html
http://www.mikeash.com/pyblog/friday-qa-2009-08-14-practical-blocks.html
http://mattgemmell.com/2011/07/25/network-link-conditioner-in-lion/

Mobile Application Testing 102 / 122

A
iOS Coding Guidelines

To improve readability and maintainability of your Objective-C code, we recom-

mend following these coding standards:

A.1 Files, Code Organization and Other Issues
• Do not include more than one class in the same file. Use one file per class,

with the filename matching the name of the class, for easier retrieval.

• Put protocols in a separate file. Do not include protocols in class headers.

• Lines are indented with 4 spaces, which means NO TABS.

• Add a space between numbers, mathematical operators and other symbols.

• Class names use PascalCase, variables and methods use camelCase, con-

stants use ALL_CAPS_WITH_UNDERSCORES.

• Unless they are assigned some value in the declaration, always initialize all

pointer variables to nil, no matter whether they are instance fields or not.

• Use the @class statement in header files (for both classes and protocols) when-

ever possible, instead of #import’ing them, to reduce the number of dependen-

cies between files.

• Use ARC (Automatic Reference Counting) for new projects.

A.2 Brackets
• The layout of brackets follows the "Allman" or "ANSI style", with opening bracket

in a separate line:

A.3. INSTANCE VARIABLE + PROPERTY NAMING STANDARDS 103

Line 1 @interface SomeClass : NSObject

- {

- // ivars go here

- }

• Always use opening brackets, even in one-line blocks, such as the following if

and while statements:

Line 1 while(x == y)

- {

- [something message];

- }

5 [other message];

-

- if(x == y)

- {

- [something message];

10 }

A.3 Instance Variable + Property Naming Standards
• Against Apple’s own recommendation, ivars must have an underscore as

prefix.

• Properties have the same name as the ivars they wrap, minus the underscore:

Line 1 @interface SomeClass : NSObject

- {

- NSInteger _ivar;

- }

5

- @property (nonatomic) NSInteger ivar;

-

- @end

• Do not override @synthesized properties with your own code: use @dynamic

properties instead, particularly when you are not wrapping an existing ivar.

• Always use accessors to get or set ivars; do not access them directly. This will

make your code KVO- and KVC-compliant, and in Objective-C this is impor-

tant.

• Append the "IBOutlet" decoration to properties, not to ivars:

A.4. PROPERTIES, INIT AND DEALLOC 104

Line 1 @interface SomeClass : NSObject

- {

- UILabel *_ivar;

- }

5

- @property (nonatomic, retain) IBOutlet UILabel *ivar;

-

- @end

A.4 Properties, init and dealloc
• To avoid raising KVO notifications during init and dealloc, do not ever use

setters or getters in those two methods.

• In all other methods, always use the setters and getters, to be sure to raise

KVO notifications.

• Use the self.prop = nil; idiom for releasing a retained object and to set its

wrapped ivar to nil at the same time. This syntax is the same for retained and

assigned properties.

Line 1 - (id)init

- {

- if (self = [super init])

- {

5 _prop = [[SomeClass alloc] init];

- }

- return self;

- }

-

10 - (id)someMethod:(id)param

- {

- // ...

-

- // This generates KVO notifications, sets the ivar to nil and ←↩
properly

15 // releases the object as required.

- self.prop = nil;

-

- // ...

-

20 return nil;

A.5. POINTERS 105

- }

A.5 Pointers
• Pointer variables always feature a space between the class name and the star

sign. The star sign and the ivar variable name are not separated by a space:

Line 1 - (ReturnClass *)methodName:(ParamClass1 *)param1 another:(←↩
ParamClass2 *)param2

- {

- SomeOtherClass *variable = [[SomeOtherClass alloc] init];

- return nil;

5 }

A.6 Comments
• Self-documenting code is a myth; always add comments to explain what’s

going on. More comments is better.

• Add HeaderDocs to class and method definitions. These comments can later

be extracted using Doxygen or HeaderDoc:

Line 1 /*!

- @class SomeController

- @superclass UIViewController

- @abstract Does interesting things, indeed.

5 */

- @interface SomeController : UIViewController

- {

- }

-

10 /*!

- @method doSomething

- @abstract Changes the internal state of the object.

- @discussion Unbelievable things can happen if you call this ←↩
method.

- @result Just a float number meaning lots of things.

15 */

- - (float)doSomething;

A.7. PROTOCOLS 106

A.7 Protocols
• Albeit Objective-C is a dynamic language, do not use informal protocols;

create explicit files with protocol definitions.

• Put protocol definitions in their own source code files, never in the same file

of the class which uses the protocol methods, neither in the class used as

delegate.

• Follow Apple’s guidelines for naming the methods of a protocol; in particular,

make sure that the first parameter of every protocol method is a pointer to the

object calling the method:

Line 1 [source,c]

- @protocol SomeControllerDelegate

-

- - (void)someController:(SomeController *)controller ←↩
didSomethingWithThisObject:(id)object;

• Use the @required and @optional keywords to explicitly separate methods of a

protocol which must be implemented from those that should be implemented:

Line 1 @protocol SomeControllerDelegate

-

- @required

- - (void)someController:(SomeController *)controller ←↩
didSomethingWithThisObject:(id)object;

5

- @optional

- - (void)someControllerDidSomethingElse:(SomeController *)controller;

-

- @end

A.8 Before Committing Code in SCM Systems
• Do not leave compiler warnings unattended. Objective-C code must always

compile without warnings – warnings must be treated as errors.

• Use the LLVM/Clang Static Analyzer to check your code for memory leaks or

unforeseen problems (integrated in Xcode 3.2). Set the "Run Static Analyzer"

option for the Debug configuration of your project to make the static analyzer

run automatically at each build.

• Run all unit tests.

http://akosma.com/2009/07/16/objective-c-compiler-warnings/
http://clang-analyzer.llvm.org/

A.8. BEFORE COMMITTING CODE IN SCM SYSTEMS 107

• Always add a meaningful message with your commit.

Mobile Application Testing 108 / 122

B
Code Style Guidelines for Android

These guidelines have been adapted from the Code Style Guidelines for Android

Contributors.

B.1 Java Language Rules
We follow standard Java coding conventions. We add a few rules:

Don’t Ignore Exceptions
Sometimes it is tempting to write code that completely ignores an exception like

this:

Line 1 void setServerPort(String value) {

- try {

- serverPort = Integer.parseInt(value);

- } catch (NumberFormatException e) { }

5 }

You must never do this. While you may think that your code will never encounter

this error condition or that it is not important to handle it, ignoring exceptions

like above creates mines in your code for someone else to trip over some day. You

must handle every Exception in your code in some principled way. The specific

handling varies depending on the case.

Anytime somebody has an empty catch clause they should have a creepy feeling.
There are definitely times when it is actually the correct thing to do, but at least
you have to think about it. In Java you can’t escape the creepy feeling. -James

Gosling

http://source.android.com/source/code-style.html
http://source.android.com/source/code-style.html
http://www.artima.com/intv/solid4.html
http://www.artima.com/intv/solid4.html

B.1. JAVA LANGUAGE RULES 109

Acceptable alternatives (in order of preference) are:

• Throw the exception up to the caller of your method.

Line 1 void setServerPort(String value) throws NumberFormatException {

- serverPort = Integer.parseInt(value);

- }

• Throw a new exception that’s appropriate to your level of abstraction.

Line 1 void setServerPort(String value) throws ConfigurationException {

- try {

- serverPort = Integer.parseInt(value);

- } catch (NumberFormatException e) {

5 throw new ConfigurationException("Port " + value + " is not ←↩
valid.");

- }

- }

• Handle the error gracefully and substitute an appropriate value in the catch {}

block.

Line 1 /** Set port. If value is not a valid number, 80 is substituted. */

-

- void setServerPort(String value) {

- try {

5 serverPort = Integer.parseInt(value);

- } catch (NumberFormatException e) {

- serverPort = 80; // default port for server

- }

- }

• Catch the Exception and throw a new RuntimeException. This is dangerous:

only do it if you are positive that if this error occurs, the appropriate thing to

do is crash.

Line 1 /** Set port. If value is not a valid number, die. */

-

- void setServerPort(String value) {

- try {

5 serverPort = Integer.parseInt(value);

- } catch (NumberFormatException e) {

- throw new RuntimeException("port " + value " is invalid, ", ←↩
e);

- }

- }

B.1. JAVA LANGUAGE RULES 110

Note that the original exception is passed to the constructor for RuntimeEx-

ception. If your code must compile under Java 1.3, you will need to omit the

exception that is the cause. * Last resort: if you are confident that actually

ignoring the exception is appropriate then you may ignore it, but you must

also comment why with a good reason:

Line 1 /** If value is not a valid number, original port number is used. ←↩
*/

- void setServerPort(String value) {

- try {

- serverPort = Integer.parseInt(value);

5 } catch (NumberFormatException e) {

- // Method is documented to just ignore invalid user input.

- // serverPort will just be unchanged.

- }

- }

Don’t Catch Generic Exception
Sometimes it is tempting to be lazy when catching exceptions and do something

like this:

Line 1 try {

- someComplicatedIOFunction(); // may throw IOException

- someComplicatedParsingFunction(); // may throw ParsingException

- someComplicatedSecurityFunction(); // may throw ←↩
SecurityException

5 // phew, made it all the way

- } catch (Exception e) { // I’ll just catch all ←↩
exceptions

- handleError(); // with one generic handler!

- }

You should not do this. In almost all cases it is inappropriate to catch generic

Exception or Throwable, preferably not Throwable, because it includes Error

exceptions as well. It is very dangerous. It means that Exceptions you never

expected (including RuntimeExceptions like ClassCastException) end up getting

caught in application-level error handling. It obscures the failure handling prop-

erties of your code. It means if someone adds a new type of Exception in the code

you’re calling, the compiler won’t help you realize you need to handle that er-

ror differently. And in most cases you shouldn’t be handling different types of

exception the same way, anyway.

B.1. JAVA LANGUAGE RULES 111

There are rare exceptions to this rule: certain test code and top-level code where

you want to catch all kinds of errors (to prevent them from showing up in a UI,

or to keep a batch job running). In that case you may catch generic Exception (or

Throwable) and handle the error appropriately. You should think very carefully

before doing this, though, and put in comments explaining why it is safe in this

place.

Alternatives to catching generic Exception:

• Catch each exception separately as separate catch blocks after a single try.

This can be awkward but is still preferable to catching all Exceptions. Beware

repeating too much code in the catch blocks.

• Refactor your code to have more fine-grained error handling, with multiple try

blocks. Split up the IO from the parsing, handle errors separately in each case.

• Rethrow the exception. Many times you don’t need to catch the exception at

this level anyway, just let the method throw it.

Remember: exceptions are your friend! When the compiler complains you’re not

catching an exception, don’t scowl. Smile: the compiler just made it easier for

you to catch runtime problems in your code.

Don’t Use Finalizers
Finalizers are a way to have a chunk of code executed when an object is garbage

collected.

Pros: can be handy for doing cleanup, particularly of external resources.

Cons: there are no guarantees as to when a finalizer will be called, or even that

it will be called at all.

Decision: we don’t use finalizers. In most cases, you can do what you need

from a finalizer with good exception handling. If you absolutely need it, define

a close() method (or the like) and document exactly when that method needs to

be called. See InputStream for an example. In this case it is appropriate but

not required to print a short log message from the finalizer, as long as it is not

expected to flood the logs.

Fully Qualify Imports
When you want to use class Bar from package foo,there are two possible ways

to import it:

1. import foo.*;

B.2. JAVA LIBRARY RULES 112

• Pros: Potentially reduces the number of import statements.

2. import foo.Bar;

• Pros: Makes it obvious what classes are actually used. Makes code more

readable for maintainers.

Decision: Use the latter for importing all Android code. An explicit exception is

made for java standard libraries (java.util.*, java.io.*, etc.) and unit test

code (junit.framework.*)

B.2 Java Library Rules
There are conventions for using Android’s Java libraries and tools. In some

cases, the convention has changed in important ways and older code might use

a deprecated pattern or library. When working with such code, it’s okay to

continue the existing style (see Consistency). When creating new components

never use deprecated libraries.

B.3 Java Style Rules

Use Javadoc Standard Comments
Files should start with a package statement and import statements should fol-

low, each block separated by a blank line. And then there is the class or interface

declaration. In the Javadoc comments, describe what the class or interface does.

Line 1 package com.android.internal.foo;

-

- import android.os.Blah;

- import android.view.Yada;

5

- import java.sql.ResultSet;

- import java.sql.SQLException;

-

- /**

10 * Does X and Y and provides an abstraction for Z.

- */

-

- public class Foo {

- ...

15 }

B.3. JAVA STYLE RULES 113

Every class and nontrivial public method you write must contain a Javadoc

comment with at least one sentence describing what the class or method does.

This sentence should start with a 3rd person descriptive verb.

Examples:

Line 1 /** Returns the correctly rounded positive square root of a double ←↩
value. */

- static double sqrt(double a) {

- ...

- }

or

Line 1 /**

- * Constructs a new String by converting the specified array of

- * bytes using the platform’s default character encoding.

- */

5 public String(byte[] bytes) {

- ...

- }

You do not need to write Javadoc for trivial get and set methods such as setFoo()

if all your Javadoc would say is "sets Foo". If the method does something more

complex (such as enforcing a constraint or having an important side effect), then

you must document it. And if it’s not obvious what the property "Foo" means,

you should document it.

Every method you write, whether public or otherwise, would benefit from Javadoc.

Public methods are part of an API and therefore require Javadoc.

Android does not currently enforce a specific style for writing Javadoc com-

ments, but you should follow the Sun Javadoc conventions.

Define Fields in Standard Places
Fields should be defined either at the top of the file, or immediately before the

methods that use them.

Limit Variable Scope
The scope of local variables should be kept to a minimum (Effective Java Item

29). By doing so, you increase the readability and maintainability of your code

and reduce the likelihood of error. Each variable should be declared in the

innermost block that encloses all uses of the variable.

http://java.sun.com/j2se/javadoc/writingdoccomments/

B.3. JAVA STYLE RULES 114

Local variables should be declared at the point they are first used. Nearly every

local variable declaration should contain an initializer. If you don’t yet have

enough information to initialize a variable sensibly, you should postpone the

declaration until you do.

One exception to this rule concerns try-catch statements. If a variable is ini-

tialized with the return value of a method that throws a checked exception, it

must be initialized inside a try block. If the value must be used outside of the

try block, then it must be declared before the try block, where it cannot yet be

sensibly initialized:

Line 1 // Instantiate class cl, which represents some sort of Set

- Set s = null;

- try {

- s = (Set) cl.newInstance();

5 } catch(IllegalAccessException e) {

- throw new IllegalArgumentException(cl + " not accessible");

- } catch(InstantiationException e) {

- throw new IllegalArgumentException(cl + " not instantiable");

- }

10

- // Exercise the set

- s.addAll(Arrays.asList(args));

But even this case can be avoided by encapsulating the try-catch block in a

method:

Line 1 Set createSet(Class cl) {

- // Instantiate class cl, which represents some sort of Set

- try {

- return (Set) cl.newInstance();

5 } catch(IllegalAccessException e) {

- throw new IllegalArgumentException(cl + " not accessible");

- } catch(InstantiationException e) {

- throw new IllegalArgumentException(cl + " not instantiable");

- }

10 }

-

- ...

-

- // Exercise the set

15 Set s = createSet(cl);

- s.addAll(Arrays.asList(args));

B.3. JAVA STYLE RULES 115

Loop variables should be declared in the for statement itself unless there is a

compelling reason to do otherwise:

Line 1 for (int i = 0; i n; i++) {

- doSomething(i);

- }

and

Line 1 for (Iterator i = c.iterator(); i.hasNext();) {

- doSomethingElse(i.next());

- }

Order Import Statements
The ordering of import statements is:

1. Android imports

2. Imports from third parties (com, junit, net, org)

3. java and javax

To exactly match the IDE settings, the imports should be:

• Alphabetical within each grouping, with capital letters before lower case letters

(e.g. Z before a).

• There should be a blank line between each major grouping (android, com,

junit, net, org, java, javax).

Originally there was no style requirement on the ordering. This meant that the

IDE’s were either always changing the ordering, or IDE developers had to disable

the automatic import management features and maintain the imports by hand.

This was deemed bad. When java-style was asked, the preferred styles were all

over the map. It pretty much came down to our needing to "pick an ordering and

be consistent." So we chose a style, updated the style guide, and made the IDEs

obey it. We expect that as IDE users work on the code, the imports in all of the

packages will end up matching this pattern without any extra engineering effort.

This style was chosen such that:

• The imports people want to look at first tend to be at the top (android)

• The imports people want to look at least tend to be at the bottom (java)

• Humans can easily follow the style

• IDEs can follow the style

B.3. JAVA STYLE RULES 116

The use and location of static imports have been mildly controversial issues.

Some people would prefer static imports to be interspersed with the remaining

imports, some would prefer them reside above or below all other imports. Ad-

ditinally, we have not yet come up with a way to make all IDEs use the same

ordering.

Since most people consider this a low priority issue, just use your judgement

and please be consistent.

Use Spaces for Indentation
We use 4 space indents for blocks. We never use tabs. When in doubt, be

consistent with code around you.

We use 8 space indents for line wraps, including function calls and assignments.

For example, this is correct:

Line 1 Instrument i =

- someLongExpression(that, wouldNotFit, on, one, line);

and this is not correct:

Line 1 Instrument i =

- someLongExpression(that, wouldNotFit, on, one, line);

Follow Field Naming Conventions
• Non-public, non-static field names start with m.

• Static field names start with s.

• Other fields start with a lower case letter.

• Public static final fields (constants) are ALL_CAPS_WITH_UNDERSCORES.

For example:

Line 1 public class MyClass {

- public static final int SOME_CONSTANT = 42;

- public int publicField;

- private static MyClass sSingleton;

5 int mPackagePrivate;

- private int mPrivate;

- protected int mProtected;

- }

B.3. JAVA STYLE RULES 117

Use Standard Brace Style
Braces do not go on their own line; they go on the same line as the code before

them. So:

Line 1 class MyClass {

- int func() {

- if (something) {

- // ...

5 } else if (somethingElse) {

- // ...

- } else {

- // ...

- }

10 }

- }

We require braces around the statements for a conditional. Except, if the entire

conditional (the condition and the body) fit on one line, you may (but are not

obligated to) put it all on one line. That is, this is legal:

Line 1 if (condition) {

- body();

- }

and this is legal:

Line 1 if (condition) body();

but this is still illegal:

Line 1 if (condition)

- body(); // bad!

Limit Line Length
Each line of text in your code should be at most 100 characters long.

There has been lots of discussion about this rule and the decision remains that

100 characters is the maximum.

Exception: if a comment line contains an example command or a literal URL

longer than 100 characters, that line may be longer than 100 characters for

ease of cut and paste.

Exception: import lines can go over the limit because humans rarely see them.

This also simplifies tool writing.

B.3. JAVA STYLE RULES 118

Use Standard Java Annotations
Annotations should precede other modifiers for the same language element. Sim-

ple marker annotations (e.g. @Override) can be listed on the same line with the

language element. If there are multiple annotations, or parameterized annota-

tions, they should each be listed one-per-line in alphabetical order.<

Android standard practices for the three predefined annotations in Java are:

• @Deprecated: The @Deprecated annotation must be used whenever the use

of the annotated element is discouraged. If you use the @Deprecated annota-

tion, you must also have a @deprecated Javadoc tag and it should name an

alternate implementation. In addition, remember that a @Deprecated method

is still supposed to work.

If you see old code that has a @deprecated Javadoc tag, please add the @Dep-

recated annotation. * @Override: The @Override annotation must be used

whenever a method overrides the declaration or implementation from a super-

class.

For example, if you use the @inheritdocs Javadoc tag, and derive from a class

(not an interface), you must also annotate that the method @Overrides the

parent class’s method. * @SuppressWarnings: The @SuppressWarnings an-

notation should only be used under circumstances where it is impossible to

eliminate a warning. If a warning passes this "impossible to eliminate" test,

the @SuppressWarnings annotation must be used, so as to ensure that all

warnings reflect actual problems in the code.

When a @SuppressWarnings annotation is necessary, it must be prefixed with

a TODO comment that explains the "impossible to eliminate" condition. This

will normally identify an offending class that has an awkward interface. For

example:

Line 1 // TODO: The third-party class com.third.useful.Utility.rotate() ←↩
needs generics

- @SuppressWarnings("generic-cast") List<String> blix = Utility. ←↩
rotate(blax);

When a @SuppressWarnings annotation is required, the code should be refac-

tored to isolate the software elements where the annotation applies.

Treat Acronyms as Words
Treat acronyms and abbreviations as words in naming variables, methods, and

classes. The names are much more readable:

B.3. JAVA STYLE RULES 119

Good Bad
XmlHttpRequest XMLHTTPRequest

getCustomerId getCustomerID

class Html class HTML

String url String URL

long id long ID

Both the JDK and the Android code bases are very inconsistent with regards

to acronyms, therefore, it is virtually impossible to be consistent with the code

around you. Bite the bullet, and treat acronyms as words.

For further justifications of this style rule, see Effective Java Item 38 and Java
Puzzlers Number 68.

Log Sparingly
While logging is necessary it has a significantly negative impact on performance

and quickly loses its usefulness if it’s not kept reasonably terse. The logging

facilities provides five different levels of logging. Below are the different levels

and when and how they should be used.

• ERROR: This level of logging should be used when something fatal has hap-

pened, i.e. something that will have user-visible consequences and won’t be

recoverable without explicitly deleting some data, uninstalling applications,

wiping the data partitions or reflashing the entire phone (or worse). This level

is always logged. Issues that justify some logging at the ERROR level are typi-

cally good candidates to be reported to a statistics-gathering server.

• WARNING: This level of logging should used when something serious and un-

expected happened, i.e. something that will have user-visible consequences

but is likely to be recoverable without data loss by performing some explicit

action, ranging from waiting or restarting an app all the way to re-downloading

a new version of an application or rebooting the device. This level is always

logged. Issues that justify some logging at the WARNING level might also be

considered for reporting to a statistics-gathering server.

• INFORMATIVE: This level of logging should used be to note that something

interesting to most people happened, i.e. when a situation is detected that is

likely to have widespread impact, though isn’t necessarily an error. Such a

condition should only be logged by a module that reasonably believes that it

is the most authoritative in that domain (to avoid duplicate logging by non-

authoritative components). This level is always logged.

B.3. JAVA STYLE RULES 120

• DEBUG: This level of logging should be used to further note what is happen-

ing on the device that could be relevant to investigate and debug unexpected

behaviors. You should log only what is needed to gather enough information

about what is going on about your component. If your debug logs are domi-

nating the log then you probably should be using verbose logging.

This level will be logged, even on release builds, and is required to be sur-

rounded by an if (LOCAL_LOG) or if (LOCAL_LOGD) block, where LOCAL_LOG[D]

is defined in your class or subcomponent, so that there can exist a possibility

to disable all such logging. There must therefore be no active logic in an if

(LOCAL_LOG) block. All the string building for the log also needs to be placed

inside the if (LOCAL_LOG) block. The logging call should not be re-factored

out into a method call if it is going to cause the string building to take place

outside of the if (LOCAL_LOG) block.

There is some code that still says if (localLOGV). This is considered ac-

ceptable as well, although the name is nonstandard. * VERBOSE: This level

of logging should be used for everything else. This level will only be logged

on debug builds and should be surrounded by an if (LOCAL_LOGV) block

(or equivalent) so that it can be compiled out by default. Any string build-

ing will be stripped out of release builds and needs to appear inside the if

(LOCAL_LOGV) block.

Notes:

• Within a given module, other than at the VERBOSE level, an error should only

be reported once if possible: within a single chain of function calls within a

module, only the innermost function should return the error, and callers in

the same module should only add some logging if that significantly helps to

isolate the issue.

• In a chain of modules, other than at the VERBOSE level, when a lower-level

module detects invalid data coming from a higher-level module, the lower-level

module should only log this situation to the DEBUG log, and only if logging

provides information that is not otherwise available to the caller. Specifically,

there is no need to log situations where an exception is thrown (the exception

should contain all the relevant information), or where the only information

being logged is contained in an error code. This is especially important in the

interaction between the framework and applications, and conditions caused by

third-party applications that are properly handled by the framework should

not trigger logging higher than the DEBUG level. The only situations that

should trigger logging at the INFORMATIVE level or higher is when a module

or application detects an error at its own level or coming from a lower level.

B.3. JAVA STYLE RULES 121

• When a condition that would normally justify some logging is likely to occur

many times, it can be a good idea to implement some rate-limiting mechanism

to prevent overflowing the logs with many duplicate copies of the same (or very

similar) information.

• Losses of network connectivity are considered common and fully expected and

should not be logged gratuitously. A loss of network connectivity that has

consequences within an app should be logged at the DEBUG or VERBOSE level

(depending on whether the consequences are serious enough and unexpected

enough to be logged in a release build).

• A full filesystem on a filesystem that is acceessible to or on behalf of third-party

applications should not be logged at a level higher than INFORMATIVE.

• Invalid data coming from any untrusted source (including any file on shared

storage, or data coming through just about any network connections) is con-

sidered expected and should not trigger any logging at a level higher then

DEBUG when it’s detected to be invalid (and even then logging should be as

limited as possible).

• Keep in mind that the + operator, when used on Strings, implicitly creates

a StringBuilder with the default buffer size (16 characters) and potentially

quite a few other temporary String objects, i.e. that explicitly creating String-

Builders isn’t more expensive than relying on the default + operator (and can

be a lot more efficient in fact). Also keep in mind that code that calls Log.v()

is compiled and executed on release builds, including building the strings,

even if the logs aren’t being read.

• Any logging that is meant to be read by other people and to be available in

release builds should be terse without being cryptic, and should be reasonably

understandable. This includes all logging up to the DEBUG level.

• When possible, logging should be kept on a single line if it makes sense. Line

lengths up to 80 or 100 characters are perfectly acceptable, while lengths

longer than about 130 or 160 characters (including the length of the tag)

should be avoided if possible.

• Logging that reports successes should never be used at levels higher than

VERBOSE.

• Temporary logging that is used to diagnose an issue that’s hard to reproduce

should be kept at the DEBUG or VERBOSE level, and should be enclosed by if

blocks that allow to disable it entirely at compile-time.

• Be careful about security leaks through the log. Private information should be

avoided. Information about protected content must definitely be avoided. This

B.4. JAVATESTS STYLE RULES 122

is especially important when writing framework code as it’s not easy to know

in advance what will and will not be private information or protected content.

• System.out.println() (or printf() for native code) should never be used.

System.out and System.err get redirected to /dev/null, so your print state-

ments will have no visible effects. However, all the string building that hap-

pens for these calls still gets executed.

• The golden rule of logging is that your logs may not unnecessarily push other
logs out of the buffer, just as others may not push out yours.

Be Consistent
Our parting thought: BE CONSISTENT. If you’re editing code, take a few minutes

to look at the code around you and determine its style. If they use spaces around

their if clauses, you should too. If their comments have little boxes of stars

around them, make your comments have little boxes of stars around them too.

The point of having style guidelines is to have a common vocabulary of coding, so

people can concentrate on what you’re saying, rather than on how you’re saying

it. We present global style rules here so people know the vocabulary. But local

style is also important. If code you add to a a file looks drastically different from

the existing code around it, it throws readers out of their rhythm when they go

to read it. Try to avoid this.

B.4 Javatests Style Rules

Follow Test Method Naming Conventions
When naming test methods, you can use an underscore to seperate what is

being tested from the specific case being tested. This style makes it easier to see

exactly what cases are being tested.

For example:

Line 1 testMethod_specificCase1 testMethod_specificCase2

-

- void testIsDistinguishable_protanopia() {

- ColorMatcher colorMatcher = new ColorMatcher(PROTANOPIA)

5 assertFalse(colorMatcher.isDistinguishable(Color.RED, Color.BLACK ←↩
))

- assertTrue(colorMatcher.isDistinguishable(Color.X, Color.Y))

- }

	Introduction
	Audience of this Book
	Structure of the Book
	Sample Application

	Technical Requirements
	Acknowledgements

	I Testing iOS Applications
	Defensive Coding Techniques for iOS
	NSError, NSException and NSAssert
	NSAssert
	When to use Assertions
	Guidelines for Assertions
	Assertions in Cocoa

	NSException
	Guidelines for Using Exceptions
	Setting a Global Uncaught Exception Handler

	NSError
	Error Handling Techniques

	Code Defensively
	Treat warnings as errors
	Organize your code
	Use #pragma mark statements
	Only advertise public methods in header files
	Use the Scientific Method of Debugging
	Use consistent coding conventions

	Debugging Techniques
	Add Context Information to Log Messages
	Inspecting Objects
	Adding Exception Breakpoints
	Inspecting Memory Management
	Zombies
	Key-Value Observing
	Finding Non-Localized Strings
	Debugging UIViews
	Debugging Core Data Objects

	Useful Tools
	Network Link Conditioner
	QuincyKit
	NSLogger

	Conclusion

	Unit Testing iOS Applications
	OCUnit / SenTest
	Adding Tests
	Running Tests
	Functional Testing

	Kiwi
	Adding Kiwi to a project
	Adding Specs to a Project
	Testing User Interfaces with Kiwi

	BDD vs TDD
	Conclusion

	Functional Testing of iOS Applications
	Frank
	Getting Started with Frank
	Adding Custom Tests

	Calabash-iOS
	Getting Started
	Adding Tests

	KIF
	Features
	Installation
	Writing Tests

	UI Automation with Instruments
	Creating UI Tests with Instruments

	Conclusion

	II Testing Android Applications
	Defensive Coding Techniques for Android
	Exceptions
	Types of Exceptions
	Exception Hierarchy
	Exception Handling Guidelines

	Assertions
	The Monkey
	Performance Tips
	Miscellaneous Tips
	StrictMode
	Give Threads a Name
	Immutable Objects
	More

	Conclusion

	Unit Testing Android Applications
	JUnit
	Adding Tests
	Testing Activities

	Robolectric
	Installation
	Adding Tests

	Conclusion

	Functional Testing for Android Apps
	Calabash-Android
	Getting Started
	Preparing the Android Project
	Creating a Feature
	Running the Test

	Robotium
	How to use

	Conclusion

	Bibliography
	Books
	Tools
	Articles

	iOS Coding Guidelines
	Files, Code Organization and Other Issues
	Brackets
	Instance Variable + Property Naming Standards
	Properties, init and dealloc
	Pointers
	Comments
	Protocols
	Before Committing Code in SCM Systems

	Code Style Guidelines for Android
	Java Language Rules
	Don't Ignore Exceptions
	Don't Catch Generic Exception
	Don't Use Finalizers
	Fully Qualify Imports

	Java Library Rules
	Java Style Rules
	Use Javadoc Standard Comments
	Define Fields in Standard Places
	Limit Variable Scope
	Order Import Statements
	Use Spaces for Indentation
	Follow Field Naming Conventions
	Use Standard Brace Style
	Limit Line Length
	Use Standard Java Annotations
	Treat Acronyms as Words
	Log Sparingly
	Be Consistent

	Javatests Style Rules
	Follow Test Method Naming Conventions

