Bugs

Adrian Kosmaczewski

2021-01-15

Somewhere between the end of the Second World War and the beginning of the
Cold War, when the enemy started speaking Russian instead of German, a US
Navy programmer was working in an early computer, trying feverishly to solve
a problem in a program.

o Software is mostly bugs

o No guarantees

e Compile time vs. Run time
e An analogy

e Learning

Finally, says the legend, Mrs. Grace Hopper opened the computer chassis and
discovered, between the cables and the bolts, a dead cockroach.

A bug, found during the first debugging session ever in the history of mankind.

This anecdote is illustrative in many ways, mainly because it contains almost no
mention of the program that did not work — of course, its contents might have
been considered state secret or something like that, but the truth is that the
“bug” was actually a foreign body, completely unrelated to the program being
executed.

Software is mostly bugs

In your professional life, however, most of the code you will write and use is
buggy. Most of the libraries that you will download and use in your web pages
contain bugs of very different kinds. Actually, working software will be the
exception to the rule; most of the software does not work, and will never truly
work all the time.

Why this is so you ask? Well, to begin with, a program is a promise that you
cannot keep. You describe a world, a sequence of steps, a structure in memory
that must be operated upon following a certain way and in a certain order. But
the world is imperfect; maybe the computer running your software 10 years from
now will have new security mechanisms that will block the system calls you are
using; maybe it will use a certain type of memory chips that do not allow certain
kinds of allocations; maybe there will not be enough memory at all.



But you, in your code, you are programming your application against an imag-
inary piece of hardware. You are going to be making tons and tons of assump-
tions, and you know what? That is ok. Everybody does that. The difference
between a junior and a senior developer is the decreasing amount of assumptions
made in one’s head.

No guarantees

So, the thing is, no matter which programming language you choose, there are
no guarantees.

Yet, in spite of all of the evidence, many developers feel a warm fuzzy feeling
when using statically typed languages. It is like if they felt more protected; you
know, this variable is always going to be a pointer to a string, or this other
variable is always going to be an integer. They put up with ridiculously long
compilation times, complex syntaxes, casting objects up and down their class
hierarchies in order to do things.

Compile time vs. Run time

While other developers, maybe more aware of the reality of the world, happily
write and publish applications in languages such as Ruby, Python, JavaScript
or Objective-C, knowing well that if something can go wrong, it will go wrong.

C++, Java, Swift and other languages scoff at the thought of developers keeping
track of the objects at the end of the variables, and make sure that every method
call, that every function and every parameter and every possible combination of
templates and generics actually makes sense to an increasingly complex theorem,
verified at every compilation.

Yet, in all of its glory, even these allmighty languages have to declare themselves
lost at some point, and they implement vtable lookups in their objects anyway,
because there is always some situation in which the resolution of the polymorphic
method to be called cannot be determined at compile time, and we have to cross
fingers and pray that everything will be OK at runtime.

An analogy

When I used to teach iOS programming to developers, I used a very simple
analogy that always made me laugh.

Somehow I thought of C++ as an east-coast kind of language: uptight, control-
freak, obsessed with detail and verification, and without any trust whatsoever.
If C++ was a person, it would be a rich financial trader in Manhattan, with a
nice suit and a nice car, and a perfectly controlled life around him.

A bit like American Psycho, if you see what I mean.



On the other hand, I used to describe Objective-C as a pure west-coast kind
of language, a product of the 70’s, a relaxed language that would make almost
no verification whatsoever of your types, while at the same time it would be
smoking pot and listening to Led Zeppelin out loud. Objective-C would be
a 1971 hippie in the middle of San Francisco, protesting against the war in
Vietnam and enjoying life as it comes.

A bit like American Pie, if you see what I mean.

Learning

What I recommend to you, faced with strongly and weakly, statically and dy-
namically typed languages, is that you start your career with a really strongly
typed one. It will make your beginnings easier, as long as you can understand
the error messages of your compiler — and believe me, they can be quite hard
to understand sometimes.

But as you grow up, let’s say 10, 15 years from now, move to more dynamic lan-
guages. Statically typed languages, maybe something like Go (not particularly
C++ to be honest, buy why not) that will provide you with a simpler mental
model to follow at the beginning. The compiler will basically take you by the
hand and guide you until you have a working piece of software.

However, let your inner instinct guide you towards more relaxed languages as
you move forward. Open up your mind, and enjoy the tremendous freedom
offered by a language whose compiler does not stand up in your way.



	Software is mostly bugs
	No guarantees
	Compile time vs. Run time
	An analogy
	Learning

